Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Sách Bài Tập Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách giải toán 11 Bài 11: Khái niệm về phép dời hình và hai hình bằng nhau giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 11 Hình học Bài 6 trang 20: Cho hình vuông ABCD, gọi O là giao điểm của AC và BD. Tìm ảnh của các điểm A, B, O qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc 90° và phép đối xứng qua đường BD (h.1.41).
Lời giải
– Ảnh của A, B, O qua phép quay tâm O góc 90o lần lượt là: D, A, O
– Ảnh của A, B, O qua phép đối xứng qua đường thẳng BD là: C, B, O
Gợi ý. Sử dụng tính chất điểm B nằm giữa hai điểm A và C khi và chỉ khi AB + BC = AC (h.1.43).
Lời giải
Áp dụng định nghĩa: phép dời hình là phép biến hình bảo toàn khoảng cảnh giữa hai điểm bất kỳ
Nên ảnh của 3 điểm A, B, C qua phép dời hình F là 3 điểm A’, B’, C’
Khi đó:
AB = A’B’, BC = B’C’, AC = A’C’
Ta có: A, B, C thằng hàng và B nằm giữa A và C ⇒ AB + BC = AC
⇒ A’B’ + B’C’ = A’C’
Hay A’, B’, C’ thẳng hàng và B’ nằm giữa A’ và C’
Trả lời câu hỏi Toán 11 Hình học Bài 6 trang 21: Gọi A’, B’ lần lượt là ảnh của A, B qua phép dời hình F. Chứng minh rằng nếu M là trung điểm của AB thì M’ = F(M) là trung điểm của A’B’.
Lời giải
Gọi A’, B’, M’ lần lượt là ảnh của A, B, M qua phép dời hình F
Theo tính chất 1 ⇒ AB = A’B’ và AM = A’M’ (1)
M là trung điểm AB ⇒ AM = 1/2 AB
Kết hợp (1) ⇒ A’M’ = 1/2 A’B’ ⇒ M’ là trung điểm A’B’
Lời giải
– Phép đối xứng qua tâm I biến ΔAEI thành ΔCFI
– Phép đối xứng qua trục d biến ΔCFI thành ΔFCH
Lời giải
I là giao điểm AC và BD nên I là trung điểm của AC và BD
Mà AC = BD ⇒ AI = BI = 1/2 AC = 1/2 BD
Gọi E, F theo thứ tự là trung điểm của AD và BC ⇒ EF là đường trung bình của hình chữ nhật ABCD và AE = BF = 1/2 AD = 1/2 BC
⇒ EF // AB ⇒ EF vuông góc với AD và EF vuông góc với BC
Xét hai tam giác vuông AEI và BFI có:
AI = BI
AE = BF
⇒ ΔAEI = ΔBFI (cạnh huyền – cạnh góc vuông)
⇒ EI = FI (hai cạnh tương ứng)
⇒ I là trung điểm EF
Do đó, phép đối xứng qua tâm I biến hình thang AEIB thành hình thang CFID
⇒ Hai hình thang AEIB và CFID bằng nhau
Bài 1 (trang 23 SGK Hình học 11): Trong mặt phẳng Oxy cho các điểm A(-3; 2), B(-4; 5) và C(-1; 3).
a. Chứng minh rằng các điểm A’(2; 3), B’(5; 4) và C’(3; 1) theo thứ tự là ảnh của A, B và C qua phép quay tâm O góc –90o.
b. Gọi tam giác A1B1C1 là ảnh của tam giác ABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc –90o và phép đối xứng qua trục Ox. Tìm tọa độ các đỉnh của tam giác A1B1C1.
Lời giải:
a) + Ta có:
+ Chứng minh hoàn toàn tương tự ta được
b. ΔA1B1C1 là ảnh của ΔABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc –90º và phép đối xứng qua trục Ox.
⇒ ΔA1B1C1 là ảnh của ΔA’B’C’ qua phép đối xứng trục Ox.
⇒ A1 = ĐOx(A’) ⇒ A1(2; -3)
B1 = ĐOx(B’) ⇒ B1(5; -4)
C1 = ĐOy(C’) ⇒ C1(3; -1).
Bài 2 (trang 24 SGK Hình học 11): Cho hình chữ nhật ABCD. Gọi E, E, H, K, O, I, J lần lượt là trung điểm của các cạnh AB, BC, CD, DA, KF, HC, KO. Chứng minh hai hình thang AEJK và FOIC bằng nhau.
Lời giải:
Gọi L là trung điểm của OF.
+ Vì EO là đường trung trực của các đoạn thẳng AB; KF; JL
⇒ B = ĐEO (A); F = ĐEO (K) ; L = ĐEO (J); E = ĐEO (E)
⇒ Hình thang BFLE là ảnh của hình thang AKJE qua phép đối xứng trục EO.
⇒ Hai hình thang BFLE và AKJE bằng nhau (1)
⇒ Hình thang FCIO là ảnh của hình thang BFLE qua phép tịnh tiến theo
⇒ Hai hình thang FCIO và BFLE bằng nhau (2)
Từ (1) và (2) ⇒ hai hình thang FCIO và AKJE bằng nhau.
Bài 3 (trang 24 SGK Hình học 11): Chứng minh rằng: Nếu một phép dời hình biến tam giác ABC thành tam giác A’B’C’ thì nó cũng biến trọng tâm của tam giác ABC tương ứng thành trọng tâm của tam giác A’B’C’.
Lời giải:
Gọi f là phép dời hình biến tam giác ABC thành tam giác A’B’C’.
Gọi D là trung điểm của BC, D’ = f(D).
Gọi G là trọng tâm ΔABC, G’ = f(G).
+ B, D, C thẳng hàng ⇒ B’; D’; C’ thẳng hàng.
+ A; G; D thẳng hàng ⇒ A’; G’; D’ thẳng hàng.
+ B’D’ = BD = BC/2 = B’C’/2 ⇒ D’ là trung điểm B’C’.
+ A’G’ = AG = 2.AD/3 = 2.A’D’/3 ⇒ G’ là trọng tâm ΔA’B’C’.
Vậy phép dời hình f biến trọng tâm G của ΔABC thành trọng tâm G’ của ΔA’B’C’ (đpcm).