Phần Đại số – Chương 4: Bất phương trình bậc nhất một ẩn

Xem toàn bộ tài liệu Lớp 8: tại đây

Sách giải toán 8 Bài 5: Phương trình chứa dấu giá trị tuyệt đối giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 50: Rút gọn các biểu thức:

a) C = |-3x| + 7x – 4 khi x ≤ 0;

b) D = 5 – 4x + |x – 6| khi x < 6.

Lời giải

a) x ≤ 0 nên – 3x ≥ 0 ⇒ |-3x| = -3x

Vậy C = |-3x| + 7x – 4 = -3x + 7x – 4 = 4x – 4

b) x < 6 nên x – 6 < 0 ⇒ |x – 6| = -(x – 6) = 6 – x

Vậy D = 5 – 4x + |x – 6| = 5 – 4x + 6 – x = 11 – 5x

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 51: Giải các phương trình:

a) |x + 5| = 3x + 1;

b) |-5x| = 2x + 21.

Lời giải

a) Với x ≥ -5 thì x + 5 ≥ 0 nên |x + 5| = x + 5

x + 5 = 3x + 1 ⇔ 2x = 4 ⇔ x = 2 (thỏa mãn điều kiện x ≥ -5)

Với x < -5 thì x + 5 < 0 nên |x + 5| = – (x + 5) = – x – 5

-x – 5 = 3x + 1 ⇔ 4x = -6 ⇔ x = (không thỏa mãn điều kiện x ≤ -5)

Vậy tập nghiệm của bất phương trình |x + 5| = 3x + 1 là S = {2}

a) Với x ≥ 0 thì – 5x ≤ 0 nên |-5x| = -(-5x) = 5x

|-5x|= 2x + 21 ⇔ 5x = 2x + 21

⇔ 3x = 21 ⇔ x = 7 (không thỏa mãn điều kiện x ≥0)

Với x < 0 thì – 5x > 0 nên |-5x| = -5x

|-5x|= 2x + 21 ⇔ -5x = 2x + 21

⇔ -7x = 21 ⇔ x = -3 (thỏa mãn điều kiện x < 0)

Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3}

Bài 5: Phương trình chứa dấu giá trị tuyệt đối

Bài 35 (trang 51 SGK Toán 8 tập 2): Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0;

b) B = |-4x| – 2x + 12 trong hai trường hợp: x ≤ 0 và x > 0;

c) C = |x – 4| – 2x + 12 khi x > 5;

d) D = 3x + 2 + |x + 5|.

Ghi nhớ

a) – Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x

Vậy A = 3x + 2 + 5x = 8x + 2

– Khi x < 0 ta có 5x < 0 nên |5x| = -5x

Vậy A = 3x + 2 – 5x = -2x + 2

b) – Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x – 2x + 12 = -6x + 12

– Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x – 2x + 12 = 2x + 12

c) – Khi x > 5 ta có x – 4 > 1 (trừ hai vế cho 4) hay x – 4 > 0 nên |x – 4| = x – 4

Vậy C = x – 4 – 2x + 12 = -x + 8

d) Ta có: |x + 5| = x + 5 khi x + 5 ≥ 0 hay x ≥ -5.

|x + 5| = -(x + 5) khi x + 5 < 0 hay x < -5.

Vậy :

+ Với x ≥ -5 thì D = 3x + 2 + x + 5 = 4x + 7.

+ Với x < -5 thì D = 3x + 2 – (x + 5) = 3x + 2 – x – 5 = 2x – 3.

Bài 5: Phương trình chứa dấu giá trị tuyệt đối

Bài 36 (trang 51 SGK Toán 8 tập 2): Giải các phương trình:

a) |2x| = x – 6 ;     b) |-3x| = x – 8

c) |4x| = 2x + 12 ;     d) |-5x| – 16 = 3x

Lời giải:

a) |2x| = x – 6 (1)

Ta có: |2x| = 2x khi 2x ≥ 0 hay x ≥ 0

|2x| = -2x khi 2x < 0 hay x < 0.

Vậy phương trình (1) tương đương với:

+ 2x = x – 6 với điều kiện x ≥ 0

2x = x – 6 ⇔ x = -6

Giá trị x = -6 không thỏa mãn điều kiện x ≥ 0 nên không phải nghiệm của (1)

+ -2x = x – 6 với điều kiện x < 0

-2x = x – 6 ⇔ -3x = -6 ⇔ x = 2.

Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên không phải nghiệm của (1).

Vậy phương trình (1) vô nghiệm.

b) |-3x| = x – 8 (2)

Ta có: |-3x| = -3x khi -3x ≥ 0 hay x ≤ 0.

|-3x| = -(-3x) = 3x khi -3x < 0 hay x > 0.

Vậy phương trình (2) tương đương với:

+ -3x = x – 8 với điều kiện x ≤ 0

-3x = x – 8 ⇔ -4x = -8 ⇔ x = 2

Giá trị x = 2 không thỏa mãn điều kiện x ≤ 0 nên không phải nghiệm của (2).

+ 3x = x – 8 với điều kiện x < 0

3x = x – 8 ⇔ 2x = -8 ⇔ x = -4.

Giá trị x = -4 không thỏa mãn điều kiện x < 0 nên không phải nghiệm của (2).

Vậy phương trình (2) vô nghiệm.

c) |4x| = 2x + 12 (3)

Ta có: |4x| = 4x khi 4x ≥ 0 ⇔ x ≥ 0

|4x| = -4x khi 4x < 0 hay x < 0.

Vậy phương trình (3) tương đương với:

+ 4x = 2x + 12 với điều kiện x ≥ 0

4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6.

Giá trị x = 6 thỏa mãn điều kiện x ≥ 0 nên là nghiệm của (3)

+ -4x = 2x + 12 với điều kiện x < 0

-4x = 2x + 12 ⇔ -6x = 12 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x < 0 nên là nghiệm của (3).

Vậy phương trình (3) có hai nghiệm x = 6 và x = -2.

d) |-5x| – 16 = 3x (4)

Ta có: |-5x| = -5x khi -5x ≥ 0 hay x ≤ 0.

|-5x| = -(-5x) = 5x khi -5x < 0 hay x > 0.

Vậy phương trình (4) tương đương với:

+ -5x – 16 = 3x với điều kiện x ≤ 0.

-5x – 16 = 3x ⇔ -5x – 3x = 16 ⇔ -8x = 16 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x ≤ 0 nên là nghiệm của (4).

+ 5x – 16 = 3x với điều kiện x > 0.

5x – 16 = 3x ⇔ 5x – 3x = 16 ⇔ 2x = 16 ⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x > 0 nên là nghiệm của (4).

Vậy phương trình (4) có nghiệm x = -2 và x = 8.

Bài 5: Phương trình chứa dấu giá trị tuyệt đối

Bài 37 (trang 51 SGK Toán 8 tập 2): Giải các phương trình:

a) |x – 7| = 2x + 3 ;     b) |x + 4| = 2x – 5

c) |x+ 3| = 3x – 1 ;     d) |x – 4| + 3x = 5

Lời giải:

a) |x – 7| = 2x + 3 (1)

Ta có: |x – 7| = x – 7 khi x – 7 ≥ 0 hay x ≥ 7.

|x – 7| = -(x – 7) = 7 – x khi x – 7 < 0 hay x < 7.

Vậy phương trình (1) tương đương với:

+ x – 7 = 2x + 3 khi x ≥ 7

x – 7 = 2x + 3 ⇔ x = -10.

Giá trị x = -10 không thỏa mãn điều kiện x ≥ 7 nên không phải nghiệm của (1).

+ 7 – x = 2x + 3 khi x < 7.

7 – x = 2x + 3 ⇔ 3x = 4 ⇔ x = 4/3

Giá trị x = 4/3 thỏa mãn điều kiện x < 7 nên là nghiệm của (1)

Vậy phương trình (1) có nghiệm x = 4/3.

b) |x + 4| = 2x – 5 (2)

Ta có: |x + 4| = x + 4 khi x + 4 ≥ 0 hay x ≥ -4.

|x – 7| = -(x + 4) = -x – 4 khi x + 4 < 0 hay x < -4.

Vậy phương trình (1) tương đương với:

+ x + 4 = 2x – 5 khi x ≥ -4

x + 4 = 2x – 5 ⇔ x = 9

Giá trị x = 9 thỏa mãn điều kiện x ≥ -4 nên là nghiệm của (2).

+ -x – 4 = 2x – 5 khi x < -4.

– x – 4 = 2x – 5 ⇔ 3x = 1 ⇔ x = 1/3

Giá trị x = 1/3 không thỏa mãn điều kiện x < -4 nên không phải nghiệm của (2)

Vậy phương trình (1) có nghiệm x = 9.

c) |x + 3| = 3x – 1 (3)

Ta có : |x + 3| = x + 3 khi x + 3 ≥ 0 hay x ≥ -3.

|x + 3| = -(x + 3) = -x – 3 khi x + 3 < 0 hay x < -3.

Vậy phương trình (3) tương đương với:

+ x + 3 = 3x – 1 với điều kiện x ≥ -3

x + 3 = 3x – 1 ⇔ 2x = 4 ⇔ x = 2.

Giá trị x = 2 thỏa mãn điều kiện x ≥ -3 nên là nghiệm của phương trình (3).

+ -x – 3 = 3x – 1 với điều kiện x < -3

-x – 3 = 3x – 1 ⇔ 4x = -2 ⇔ x = -1/2.

Giá trị x = -1/2 không thỏa mãn điều kiện x < -3 nên không phải nghiệm của (3).

Vậy phương trình có nghiệm x = 2.

d) |x – 4| + 3x = 5 (4)

Ta có: |x – 4| = x – 4 khi x – 4 ≥ 0 hay x ≥ 4.

|x – 4| = -(x – 4) = 4 – x khi x – 4 < 0 hay x < 4.

Vậy phương trình (4) tương đương với:

+ x – 4 + 3x = 5 với điều kiện x ≥ 4

x – 4 + 3x = 5 ⇔ 4x – 4 = 5 ⇔ 4x = 9 ⇔ x = 9/4.

Giá trị x = 9/4 không thỏa mãn điều kiện x ≥ 4 nên không là nghiệm của (4).

+ 4 – x + 3x = 5 với điều kiện x < 4.

4 – x + 3x = 5 ⇔ 2x = 1 ⇔ x = 1/2

Giá trị x = ½ thỏa mãn điều kiện x < 4 nên là nghiệm của (4).

Vậy phương trình có nghiệm x = 1/2.

* Lưu ý: Khi đã quen, bước phá dấu giá trị tuyệt đối các bạn có thể bỏ qua và trình bày ngắn gọn như sau:

d) |x – 4| + 3x = 5 (4)

+ TH1: x ≥ 4

(2) ⇔ x – 4 + 3x = 5 ⇔ 4x = 1 ⇔ x = ¼ < 4 (loại)

+ TH2: x < 4

(2) ⇔ 4 – x + 3x = 5 ⇔ 4 + 2x = 5 ⇔ 2x = 1 ⇔ x = ½ < 4(thỏa mãn).

Vậy phương trình có nghiệm x = ½.

Vậy phương trình có nghiệm x = 1/2

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 935

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống