Chương 1: Phép nhân và phép chia các đa thức

Xem toàn bộ tài liệu Lớp 8: tại đây

Bài 1: Phân tích đa thức x3 + 12x thành nhân tử ta được

A. x2(x + 12)

B. x(x2 + 12)

C. x(x2 – 12)

D. x2(x – 12)

Lời giải

Ta có x3 + 12x = x.x2 + x.12 = x(x2 + 12)

Đáp án cần chọn là: B

Bài 2: Phân tích đa thức mx + my + m thành nhân tử ta được

A. m(x + y + 1)

B. m(x + y + m)

C. m(x + y) 

D. m(x + y – 1)

Lời giải

Ta có mx + my + m = m(x + y + 1)

Đáp án cần chọn là: A

Bài 3: Đẳng thức nào sau đây là đúng

A. y5 – y4 = y4(y – 1)               

B. y5 – y4 = y3(y2 – 1)

C. y5 – y4 = y5(1 – y)                

D. y5 – y4 = y4(y + 1)

Lời giải

Ta có y5 – y4 = y4.y – y4.1 = y4(y – 1)

Bai 4: Đẳng thức nào sau đây là đúng

A. 4x3y2 – 8x2y3 = 4x2y(xy – 2y2)

B. 4x3y2 – 8x2y3 = 4x2y2(x – y)

C. 4x3y2 – 8x2y3 = 4x2y2(x – 2y)

D. 4x3y2 – 8x2y3 = 4x2y2(x – 2y)

Lời giải

Ta có 4x3y2 – 8x2y3 = 4x2y2.x – 4x2y2.2y = 4x2y2(x – 2y) 

Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)      

Đáp án cần chọn là: C

Bài 5: Chọn câu sai.

A. (x – 1)3 + 2(x – 1)2 = (x – 1)2(x + 1)        

B. (x – 1)3 + 2(x – 1) = (x – 1)[(x – 1)2 + 2]

C. (x – 1)3 + 2(x – 1)2 = (x – 1)[(x – 1)2 + 2x – 2]

D. (x – 1)3 + 2(x – 1)2 = (x – 1)(x + 3)

Lời giải

Ta có

+) (x – 1)3 + 2(x – 1)2 = (x – 1)2(x – 1) + 2(x – 1)2

= (x – 1)2(x – 1 + 2 = (x – 1)2(x + 1) nên A đúng

+) (x – 1)3 + 2(x – 1)

= (x – 1).(x – 1)2 + 2(x – 1)

= (x – 1)[(x – 1)2 + 2] nên B đúng

+) (x – 1)3 + 2(x – 1)2

= (x – 1)(x – 1)2 + 2(x – 1)(x – 1)

= (x – 1)[(x – 1)2 + 2(x – 1)]

= (x – 1)[(x – 1)2 + 2x – 2] nên C đúng

+) (x – 1)3 + 2(x – 1)2

= (x – 1)2(x + 1)

≠ (x – 1)(x + 3) nên D sai

Đáp án cần chọn là: D

Bài 6: Chọn câu sai.

A. (x – 2)2 – (2 – x)3 = (x – 2)2(x – 1) 

B. (x – 2)2 – (2 – x) = (x – 2)(x – 1)

C. (x – 2)3 – (2 – x)2 = (x – 2)2(3 – x) 

D. (x – 2)2 + x – 2 = (x – 2)(x – 1)

Lời giải

+) Đáp án A:

(x – 2)2 – (2 – x)3 = (x – 2)2 + (x – 2)3 = (x – 2)2(1 + x – 2)

= (x – 2)2(x – 1) nên A đúng.

+) Đáp án B:

(x – 2)2 – (2 – x) = (x – 2)2 + (x – 2) = (x – 2)(x – 2 + 1) = (x – 2)(x – 1)

Nên B đúng

+) Đáp án C:

(x – 2)3 – (2 – x)2 = (x – 2)3 + (x – 2)2 = (x – 2)2(x – 2 – 1)

= (x – 2)2(x – 3) nên C sai.

+) Đáp án D:

(x – 2)2 + x – 2 = (x – 2)(x – 2) + (x – 2) = (x – 2)(x – 2 + 1) = (x – 2)(x – 1)

Nên D đúng

Đáp án cần chọn là: C

Bài 7: Phân tíc đa thức 3x(x – 3y) + 9y(3y – x) thành nhân tử ta được

A. 3(x – 3y)2                  

B. (x – 3y)(3x + 9y)       

C. (x – 3y) + (3 – 9y)     

D. (x – 3y) + (3x – 9y)

Lời giải

Ta có 3x(x – 3y) + 9y(3y – x) = 3x(x – 3y) – 9y(x – 3y) = (x – 3y)(3x – 9y)

                                                = (x – 3y).3(x – 3y) = 3(x – 3y)2

Đáp án cần chọn là: A

Bài 8: Phân tích đa thức 5x(x – y) – (y – x) thành nhân tử ta được

A. 5x(x – y) – (y – x) = (x – y)(5x + 1)

B. 5x(x – y) – (y – x) = 5x(x – y)

C. 5x(x – y) – (y – x) = (x – y)(5x – 1)

D. 5x(x – y) – (y – x) = (x + y)(5x – 1)

Lời giải

Ta có 5x(x – y) – (y – x) = 5x(x – y) + (x – y) = (x – y)(5x + 1)

Đáp án cần chọn là: A

Bài 9: Cho 3a2(x + 1) – 4bx – 4b = (x + 1)(…).

Điền biểu thức thích hợp vao dấu …

A. 3a2 – b   

B. 3a2+ 4b  

C. 3a2 – 4b 

D. 3a2 + b

Lời giải

3a2(x + 1) – 4bx – 4b = 3a2(x + 1) – (4bx + 4b)

= 3a2(x + 1) – 4b(x + 1) = (x + 1)(3a2 – 4b)

Vậy ta điền vào dấu … biểu thức 3a2 – 4b

Đáp án cần chọn là: C

Bài 10: Cho ab(x – 5) – a2(5 – x) = a(x – 5)(…).Điền biểu thức thích hợp vào dấu …

A. 2a + b    

B. 1 + b      

C. a2 + ab   

D. a + b

Lời giải

ab(x – 5) – a2(5 – x) = ab(x – 5) + a2(x – 5)

= (x – 5)(ab + a2) = a(x – 5)(a + b)

Bài 11: Tìm nhân tử chung của biểu thức 5x2(5 – 2x) + 4x – 10 có thể là

A. 5 – 2x    

B. 5 + 2x    

C. 4x – 10  

D. 4x + 10

Lời giải

Ta có 5x2(5 – 2x) + 4x – 10 = 5x2(5 – 2x) – 2(-2x + 5)

                                      = 5x2(5 – 2x) – 2(5 – 2x)

Nhân tử chung là 5 – 2x

Đáp án cần chọn là: A

Bài 12: Nhân tử chung của biểu thức 30(4 – 2x)2 + 3x – 6 có thể là

A. x + 2      

B. 3(x – 2)  

C. (x – 2)2   

D. (x + 2)2

Lời giải

Ta có

30(4 – 2x)2 + 3x – 6 = 30(2x – 4)2 + 3(x – 2)

= 30.22(x – 2) + 3(x – 2)

= 120(x – 2)2 + 3(x – 2)

= 3(x – 2)(40(x – 2) + 1) = 3(x – 2)(40x – 79)

Nhân tử chung có thể là 3(x – 2)

Đáp án cần chọn là: B

Bài 13: Tìm giá trị x thỏa mãn 3x(x – 2) – x + 2 = 0

Lời giải

Ta có:

Đáp án cần chọn là: D

Bài 14: Tìm giá trị x thỏa mãn 2x(x – 3) – (3 – x) = 0

Lời giải

Ta có:

Đáp án cần chọn là: A

Bài 15: Có bao nhiêu giá trị x thỏa mãn 5(2x – 5) = x(2x – 5)

A. 1            

B. 2            

C. 3            

D. 0

Lời giải

Ta có:

Đáp án cần chọn là: B

Bài 16: Có bao nhiêu giá trị x thỏa mãn x2(x – 2) = 3x(x – 2)

A. 1            

B. 2            

C. 3            

D. 0

Lời giải

Ta có:

Vậy có 3 giá trị x thỏa mãn điều kiện đề bài x = 2; x = 0; x = 3.

Đáp án cần chọn là: C

Bài 17: Cho x1 và x2 là hai giá trị thỏa mãn x(5 – 10x) – 3(10x – 5) = 0. Khi đo x1 + x2 bằng

Lời giải

Ta có:

Đáp án cần chọn là: C

Bài 18: Cho x1 và x2 (x1 > x2) là hai giá trị thỏa mãn x(3x – 1) – 5(1 – 3x) = 0. Khi đó 3x1 – x2 bằng

A. -4          

B. 4            

C. 6             

D. -6

Lời giải

Ta có:

Đáp án cần chọn là: C

Bài 19: Cho x0 là giá trị lớn nhất thỏa mãn 4x4 – 100x2 = 0. Chọn câu đúng.

A. x0 < 2     

B. x0 < 0     

C.x0 > 3      

D. 1 < x0 < 5

Lời giải

Ta có:

Do đó x0 = 5 ⇒ x0 > 3

Đáp án cần chọn là: C

Bài 20: Cho x0 là giá trị lớn nhất thỏa mãn 25x4 – x2 = 0. Chọn câu đúng.

A. x0 < 1     

B. x0 = 0     

C. x0 > 3     

D. 1 < x0 < 2

Lời giải

Ta có:

Đáp án cần chọn là: A

Bài 21: Phân tích đa thức 7x2y2 – 21xy2z + 7xyz + 14xy ta được

A. 7xy + (xy – 3yz + z + 2)                

B. 7xy(xy – 21yz + z + 14)

C. 7xy(xy – 3y2z + z + 2)                   

D. 7xy(xy – 3yz + z + 2)

Lời giải

Ta có 7x2y2 – 21xy2z + 7xyz + 14xy

= 7xy.xy – 7xy.3yz + 7xy.z + 7xy.2 = 7xy(xy – 3yz + z + 2)

Đáp án cần chọn là: D

Bài 22: Phân tích đa thức 12x3y – 6xy + 3xy2 ta được

A. 3xy(4x2 – 2 + y)                           

B. 3xy(4x2 – 3 + y)        

C. 3xy(4x2 + 2 + y)                           

D. 3xy(4x2 – 2 + 3y)

Lời giải

Ta có 12x3y – 6xy + 3xy2

= 3xy.4x2 – 3xy.2 + 3xy.y = 3xy(4x2 – 2 + y)

Đáp án cần chọn là: A

Bài 23: Cho (a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b). Khi đặt nhân tử chung (a – b) ra ngoài thì nhân tử còn lại là

A. 2a – 2b  

B. 2a – b     

C. 2a + 2b  

D. a – b

Lời giải

Ta có

(a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b)

= (a – b)(a + 2b) + (a – b)(2a – b) – (a – b)(a + 3b)

= (a – b)(a + 2b + 2a – b – (a + 3b))

= (a – b)(3a + b – a – 3b) = (a – b)(2a – 2b)

Vậy khi đặt nhân tử chung (a – b) ra ngoài ta được biểu thức còn lại là 2a – 2b.

Đáp án cần chọn là: A

Bài 24: Cho 4xn+2 – 8xn (n Є N*). Khi đặt nhân tử chung xn ra ngoài thì nhân tử còn lại là

A. 4x2 – 2   

B. 4x2 – 8   

C. x2 – 4     

D. x2 – 2

Lời giải

Ta có 4xn+2 – 8xn = 4xn.x2 – 8xn = xn(4x2 – 8)

Vậy khi đặt nhân tử chung xn ra ngoài ta được biểu thức còn lại là 4x2 – 8

Đáp án cần chọn là: B

Bài 25: Cho A = 2019n+1 – 2019n. Khi đó A chia hết cho số nào dưới đây với mọi n Є N.

A. 2019      

B. 2018      

C. 2017      

D. 2016

Lời giải

Ta có A = 2019n+1 – 2019n

= 2019n.2019 – 2019n = 2019n(2019 – 1) = 2019n.2018

Vì 2018 ⁝ 2018 ⇒ A ⁝ 2018 với mọi n Є N.

Đáp án cần chọn là: B

Bài 26: Cho 2992 + 299.201. Khi đó tổng trên chia hết cho số nào dưới đây?

A. 500        

B. 201        

C. 599        

D. Cả A, B, C đều sai

Lời giải

Ta có 2992 + 299.201 = 299.(299 + 201) = 299.500 ⁝ 500

Đáp án cần chọn là: A

Bài 27: Cho B = 85 – 211. Khi đó B chia hết cho số nào dưới đây?

A. 151        

B. 212         

C. 15          

D. Cả A, B, C đều sai

Lời giải

Ta có B = 85 – 211

= (23)5 – 211

= 215 – 211

= 211.24 – 211

             = 211(24 – 1) = 15.211

Vì 15 ⁝ 15 ⇒ B = 15.211 ⁝ 15

Đáp án cần chọn là: C

Bài 28: Cho M = 101n+1 – 101n. Khi đó M có hai chữ số tận cùng là

A. 00          

B. 11          

C. 01          

D. 10

Lời giải

Ta có M = 101n+1 – 101n = 101n.101 – 101n

          = 101n(101 – 1) = 101n.100

Suy ra M có hai chữ số tận cùng là 00.

Đáp án cần chọn là: A

Bài 29: Biết a – 2b = 0. Tính giá trị của biểu thức B = a(a – b)3 + 2b(b – a)3

A. 0            

B. 1            

C. (a – b)3            

D. 2a + b

Lời giải

Ta có B = a(a – b)3 + 2b(b – a)3

          = a(a – b)3 – 2b(a – b)3 = (a – 2b)(a – b)3

Mà a – 2b = 0 nên B = 0.(a – b)3 = 0

Vậy B = 0

Đáp án cần chọn là: A

Bài 30: Biết x2 + y2 = 1. Tính giá trị của biểu thức M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)

A. -8          

B. 2            

C. 8            

D. -2

Lời giải

Ta có

M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)

= (x2 + y2)(3x2 + 3y2 – 5)

= (x2 + y2)[3(x2 + y2) – 5]

Mà x2 + y2 = 1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2

Đáp án cần chọn là: D

Bài 31: Tìm một số khác 0 biết rằng bình phương của nó bằng 5 lần lập phương của số ấy

Lời giải

Gọi số cần tìm là x (x ≠ 0). Theo đề bài ta có:

Đáp án cần chọn là: B

Bài 32: Cho biết x3 = 2p + 1 trong đó x là số tự nhiên, p là số nguyên tố. Tìm x.

A. x = 9      

B. x = 7      

C. x = 5      

D. x = 3

Lời giải

Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x3 = 2p + 1 nên x3 cũng là một số lẻ, suy ra x là số lẻ

Gọi x = 2k + 1 (k Є N). ta có

x3 = 2p + 1

⇔ (2k + 1)3 = 2p + 1

⇔ 8k3 + 12k2 + 6k + 1 = 2p + 1

⇔ 2p = 8k3 + 12k2 + 6k

⇔ p = 4k3 + 6k2 + 3k = k(4k2 + 6k + 3)

Mà p là số nguyên tố nên k = 1 ⇒ x = 3

Vậy số cần tìm là x = 3

Đáp án cần chọn là: D

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1045

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống