Xem toàn bộ tài liệu Lớp 8: tại đây
Bài 1: Phân tích đa thức x3 + 12x thành nhân tử ta được
A. x2(x + 12)
B. x(x2 + 12)
C. x(x2 – 12)
D. x2(x – 12)
Lời giải
Ta có x3 + 12x = x.x2 + x.12 = x(x2 + 12)
Đáp án cần chọn là: B
Bài 2: Phân tích đa thức mx + my + m thành nhân tử ta được
A. m(x + y + 1)
B. m(x + y + m)
C. m(x + y)
D. m(x + y – 1)
Lời giải
Ta có mx + my + m = m(x + y + 1)
Đáp án cần chọn là: A
Bài 3: Đẳng thức nào sau đây là đúng
A. y5 – y4 = y4(y – 1)
B. y5 – y4 = y3(y2 – 1)
C. y5 – y4 = y5(1 – y)
D. y5 – y4 = y4(y + 1)
Lời giải
Ta có y5 – y4 = y4.y – y4.1 = y4(y – 1)
Bai 4: Đẳng thức nào sau đây là đúng
A. 4x3y2 – 8x2y3 = 4x2y(xy – 2y2)
B. 4x3y2 – 8x2y3 = 4x2y2(x – y)
C. 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
D. 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Lời giải
Ta có 4x3y2 – 8x2y3 = 4x2y2.x – 4x2y2.2y = 4x2y2(x – 2y)
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
Bài 5: Chọn câu sai.
A. (x – 1)3 + 2(x – 1)2 = (x – 1)2(x + 1)
B. (x – 1)3 + 2(x – 1) = (x – 1)[(x – 1)2 + 2]
C. (x – 1)3 + 2(x – 1)2 = (x – 1)[(x – 1)2 + 2x – 2]
D. (x – 1)3 + 2(x – 1)2 = (x – 1)(x + 3)
Lời giải
Ta có
+) (x – 1)3 + 2(x – 1)2 = (x – 1)2(x – 1) + 2(x – 1)2
= (x – 1)2(x – 1 + 2 = (x – 1)2(x + 1) nên A đúng
+) (x – 1)3 + 2(x – 1)
= (x – 1).(x – 1)2 + 2(x – 1)
= (x – 1)[(x – 1)2 + 2] nên B đúng
+) (x – 1)3 + 2(x – 1)2
= (x – 1)(x – 1)2 + 2(x – 1)(x – 1)
= (x – 1)[(x – 1)2 + 2(x – 1)]
= (x – 1)[(x – 1)2 + 2x – 2] nên C đúng
+) (x – 1)3 + 2(x – 1)2
= (x – 1)2(x + 1)
≠ (x – 1)(x + 3) nên D sai
Đáp án cần chọn là: D
Bài 6: Chọn câu sai.
A. (x – 2)2 – (2 – x)3 = (x – 2)2(x – 1)
B. (x – 2)2 – (2 – x) = (x – 2)(x – 1)
C. (x – 2)3 – (2 – x)2 = (x – 2)2(3 – x)
D. (x – 2)2 + x – 2 = (x – 2)(x – 1)
Lời giải
+) Đáp án A:
(x – 2)2 – (2 – x)3 = (x – 2)2 + (x – 2)3 = (x – 2)2(1 + x – 2)
= (x – 2)2(x – 1) nên A đúng.
+) Đáp án B:
(x – 2)2 – (2 – x) = (x – 2)2 + (x – 2) = (x – 2)(x – 2 + 1) = (x – 2)(x – 1)
Nên B đúng
+) Đáp án C:
(x – 2)3 – (2 – x)2 = (x – 2)3 + (x – 2)2 = (x – 2)2(x – 2 – 1)
= (x – 2)2(x – 3) nên C sai.
+) Đáp án D:
(x – 2)2 + x – 2 = (x – 2)(x – 2) + (x – 2) = (x – 2)(x – 2 + 1) = (x – 2)(x – 1)
Nên D đúng
Đáp án cần chọn là: C
Bài 7: Phân tíc đa thức 3x(x – 3y) + 9y(3y – x) thành nhân tử ta được
A. 3(x – 3y)2
B. (x – 3y)(3x + 9y)
C. (x – 3y) + (3 – 9y)
D. (x – 3y) + (3x – 9y)
Lời giải
Ta có 3x(x – 3y) + 9y(3y – x) = 3x(x – 3y) – 9y(x – 3y) = (x – 3y)(3x – 9y)
= (x – 3y).3(x – 3y) = 3(x – 3y)2
Đáp án cần chọn là: A
Bài 8: Phân tích đa thức 5x(x – y) – (y – x) thành nhân tử ta được
A. 5x(x – y) – (y – x) = (x – y)(5x + 1)
B. 5x(x – y) – (y – x) = 5x(x – y)
C. 5x(x – y) – (y – x) = (x – y)(5x – 1)
D. 5x(x – y) – (y – x) = (x + y)(5x – 1)
Lời giải
Ta có 5x(x – y) – (y – x) = 5x(x – y) + (x – y) = (x – y)(5x + 1)
Đáp án cần chọn là: A
Bài 9: Cho 3a2(x + 1) – 4bx – 4b = (x + 1)(…).
Điền biểu thức thích hợp vao dấu …
A. 3a2 – b
B. 3a2+ 4b
C. 3a2 – 4b
D. 3a2 + b
Lời giải
3a2(x + 1) – 4bx – 4b = 3a2(x + 1) – (4bx + 4b)
= 3a2(x + 1) – 4b(x + 1) = (x + 1)(3a2 – 4b)
Vậy ta điền vào dấu … biểu thức 3a2 – 4b
Đáp án cần chọn là: C
Bài 10: Cho ab(x – 5) – a2(5 – x) = a(x – 5)(…).Điền biểu thức thích hợp vào dấu …
A. 2a + b
B. 1 + b
C. a2 + ab
D. a + b
Lời giải
ab(x – 5) – a2(5 – x) = ab(x – 5) + a2(x – 5)
= (x – 5)(ab + a2) = a(x – 5)(a + b)
Bài 11: Tìm nhân tử chung của biểu thức 5x2(5 – 2x) + 4x – 10 có thể là
A. 5 – 2x
B. 5 + 2x
C. 4x – 10
D. 4x + 10
Lời giải
Ta có 5x2(5 – 2x) + 4x – 10 = 5x2(5 – 2x) – 2(-2x + 5)
= 5x2(5 – 2x) – 2(5 – 2x)
Nhân tử chung là 5 – 2x
Đáp án cần chọn là: A
Bài 12: Nhân tử chung của biểu thức 30(4 – 2x)2 + 3x – 6 có thể là
A. x + 2
B. 3(x – 2)
C. (x – 2)2
D. (x + 2)2
Lời giải
Ta có
30(4 – 2x)2 + 3x – 6 = 30(2x – 4)2 + 3(x – 2)
= 30.22(x – 2) + 3(x – 2)
= 120(x – 2)2 + 3(x – 2)
= 3(x – 2)(40(x – 2) + 1) = 3(x – 2)(40x – 79)
Nhân tử chung có thể là 3(x – 2)
Đáp án cần chọn là: B
Bài 13: Tìm giá trị x thỏa mãn 3x(x – 2) – x + 2 = 0
Lời giải
Ta có:
Đáp án cần chọn là: D
Bài 14: Tìm giá trị x thỏa mãn 2x(x – 3) – (3 – x) = 0
Lời giải
Ta có:
Đáp án cần chọn là: A
Bài 15: Có bao nhiêu giá trị x thỏa mãn 5(2x – 5) = x(2x – 5)
A. 1
B. 2
C. 3
D. 0
Lời giải
Ta có:
Đáp án cần chọn là: B
Bài 16: Có bao nhiêu giá trị x thỏa mãn x2(x – 2) = 3x(x – 2)
A. 1
B. 2
C. 3
D. 0
Lời giải
Ta có:
Vậy có 3 giá trị x thỏa mãn điều kiện đề bài x = 2; x = 0; x = 3.
Đáp án cần chọn là: C
Bài 17: Cho x1 và x2 là hai giá trị thỏa mãn x(5 – 10x) – 3(10x – 5) = 0. Khi đo x1 + x2 bằng
Lời giải
Ta có:
Đáp án cần chọn là: C
Bài 18: Cho x1 và x2 (x1 > x2) là hai giá trị thỏa mãn x(3x – 1) – 5(1 – 3x) = 0. Khi đó 3x1 – x2 bằng
A. -4
B. 4
C. 6
D. -6
Lời giải
Ta có:
Đáp án cần chọn là: C
Bài 19: Cho x0 là giá trị lớn nhất thỏa mãn 4x4 – 100x2 = 0. Chọn câu đúng.
A. x0 < 2
B. x0 < 0
C.x0 > 3
D. 1 < x0 < 5
Lời giải
Ta có:
Do đó x0 = 5 ⇒ x0 > 3
Đáp án cần chọn là: C
Bài 20: Cho x0 là giá trị lớn nhất thỏa mãn 25x4 – x2 = 0. Chọn câu đúng.
A. x0 < 1
B. x0 = 0
C. x0 > 3
D. 1 < x0 < 2
Lời giải
Ta có:
Đáp án cần chọn là: A
Bài 21: Phân tích đa thức 7x2y2 – 21xy2z + 7xyz + 14xy ta được
A. 7xy + (xy – 3yz + z + 2)
B. 7xy(xy – 21yz + z + 14)
C. 7xy(xy – 3y2z + z + 2)
D. 7xy(xy – 3yz + z + 2)
Lời giải
Ta có 7x2y2 – 21xy2z + 7xyz + 14xy
= 7xy.xy – 7xy.3yz + 7xy.z + 7xy.2 = 7xy(xy – 3yz + z + 2)
Đáp án cần chọn là: D
Bài 22: Phân tích đa thức 12x3y – 6xy + 3xy2 ta được
A. 3xy(4x2 – 2 + y)
B. 3xy(4x2 – 3 + y)
C. 3xy(4x2 + 2 + y)
D. 3xy(4x2 – 2 + 3y)
Lời giải
Ta có 12x3y – 6xy + 3xy2
= 3xy.4x2 – 3xy.2 + 3xy.y = 3xy(4x2 – 2 + y)
Đáp án cần chọn là: A
Bài 23: Cho (a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b). Khi đặt nhân tử chung (a – b) ra ngoài thì nhân tử còn lại là
A. 2a – 2b
B. 2a – b
C. 2a + 2b
D. a – b
Lời giải
Ta có
(a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b)
= (a – b)(a + 2b) + (a – b)(2a – b) – (a – b)(a + 3b)
= (a – b)(a + 2b + 2a – b – (a + 3b))
= (a – b)(3a + b – a – 3b) = (a – b)(2a – 2b)
Vậy khi đặt nhân tử chung (a – b) ra ngoài ta được biểu thức còn lại là 2a – 2b.
Đáp án cần chọn là: A
Bài 24: Cho 4xn+2 – 8xn (n Є N*). Khi đặt nhân tử chung xn ra ngoài thì nhân tử còn lại là
A. 4x2 – 2
B. 4x2 – 8
C. x2 – 4
D. x2 – 2
Lời giải
Ta có 4xn+2 – 8xn = 4xn.x2 – 8xn = xn(4x2 – 8)
Vậy khi đặt nhân tử chung xn ra ngoài ta được biểu thức còn lại là 4x2 – 8
Đáp án cần chọn là: B
Bài 25: Cho A = 2019n+1 – 2019n. Khi đó A chia hết cho số nào dưới đây với mọi n Є N.
A. 2019
B. 2018
C. 2017
D. 2016
Lời giải
Ta có A = 2019n+1 – 2019n
= 2019n.2019 – 2019n = 2019n(2019 – 1) = 2019n.2018
Vì 2018 ⁝ 2018 ⇒ A ⁝ 2018 với mọi n Є N.
Đáp án cần chọn là: B
Bài 26: Cho 2992 + 299.201. Khi đó tổng trên chia hết cho số nào dưới đây?
A. 500
B. 201
C. 599
D. Cả A, B, C đều sai
Lời giải
Ta có 2992 + 299.201 = 299.(299 + 201) = 299.500 ⁝ 500
Đáp án cần chọn là: A
Bài 27: Cho B = 85 – 211. Khi đó B chia hết cho số nào dưới đây?
A. 151
B. 212
C. 15
D. Cả A, B, C đều sai
Lời giải
Ta có B = 85 – 211
= (23)5 – 211
= 215 – 211
= 211.24 – 211
= 211(24 – 1) = 15.211
Vì 15 ⁝ 15 ⇒ B = 15.211 ⁝ 15
Đáp án cần chọn là: C
Bài 28: Cho M = 101n+1 – 101n. Khi đó M có hai chữ số tận cùng là
A. 00
B. 11
C. 01
D. 10
Lời giải
Ta có M = 101n+1 – 101n = 101n.101 – 101n
= 101n(101 – 1) = 101n.100
Suy ra M có hai chữ số tận cùng là 00.
Đáp án cần chọn là: A
Bài 29: Biết a – 2b = 0. Tính giá trị của biểu thức B = a(a – b)3 + 2b(b – a)3
A. 0
B. 1
C. (a – b)3
D. 2a + b
Lời giải
Ta có B = a(a – b)3 + 2b(b – a)3
= a(a – b)3 – 2b(a – b)3 = (a – 2b)(a – b)3
Mà a – 2b = 0 nên B = 0.(a – b)3 = 0
Vậy B = 0
Đáp án cần chọn là: A
Bài 30: Biết x2 + y2 = 1. Tính giá trị của biểu thức M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)
A. -8
B. 2
C. 8
D. -2
Lời giải
Ta có
M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)
= (x2 + y2)(3x2 + 3y2 – 5)
= (x2 + y2)[3(x2 + y2) – 5]
Mà x2 + y2 = 1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2
Đáp án cần chọn là: D
Bài 31: Tìm một số khác 0 biết rằng bình phương của nó bằng 5 lần lập phương của số ấy
Lời giải
Gọi số cần tìm là x (x ≠ 0). Theo đề bài ta có:
Đáp án cần chọn là: B
Bài 32: Cho biết x3 = 2p + 1 trong đó x là số tự nhiên, p là số nguyên tố. Tìm x.
A. x = 9
B. x = 7
C. x = 5
D. x = 3
Lời giải
Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x3 = 2p + 1 nên x3 cũng là một số lẻ, suy ra x là số lẻ
Gọi x = 2k + 1 (k Є N). ta có
x3 = 2p + 1
⇔ (2k + 1)3 = 2p + 1
⇔ 8k3 + 12k2 + 6k + 1 = 2p + 1
⇔ 2p = 8k3 + 12k2 + 6k
⇔ p = 4k3 + 6k2 + 3k = k(4k2 + 6k + 3)
Mà p là số nguyên tố nên k = 1 ⇒ x = 3
Vậy số cần tìm là x = 3
Đáp án cần chọn là: D