Các dạng bài tập Căn bậc hai – Căn bậc ba cực hay

Xem toàn bộ tài liệu Lớp 9: tại đây

Phương pháp giải

a) Tìm x nguyên để biểu thức A = nguyên.

Bước 1. Tách A thành dạng

trong đó h(x) là một biểu thức nguyên khi x nguyên, m là nguyên.

Bước 2: A nguyên ⇔ nguyên ⇔ g(x) ∈ Ư(m).

Bước 3. Với mỗi giá trị của g(x), tìm x tương ứng và kết luận.

b) Tìm x để biểu thức A nguyên (Sử dụng phương pháp kẹp).

Bước 1: Áp dụng các bất đẳng thức để tìm hai số m, M sao cho m < A < M.

Bước 2: Tìm các giá trị nguyên trong khoảng từ m đến M.

Với mỗi trường hợp, tìm giá trị của x và kết luận.

Lưu ý: Đối chiếu điều kiện xác định của biểu thức.

Ví dụ minh họa

Ví dụ 1: Với giá trị nguyên nào của x thì biểu thức

cũng đạt giá trị nguyên?

Hướng dẫn giải:

Điều kiện xác định: x ≥ 0; x ≠ 1 .

Ta có:

⇔ √x – 1 ∈ Ư(2) = {-2; -1; 1; 2}

Ta có bảng sau:

Vậy với x ∈ {0; 4; 9} thì biểu thức A đạt giá trị nguyên.

Ví dụ 2: Tìm giá trị nguyên của x để biểu thức

nguyên.

Hướng dẫn giải:

Đkxđ: x ≠ -1.

Ta có:

⇔ x + 1 ∈ Ư(2) = {-2; -1; 1; 2}

⇔ x ∈ {-3; -2; 0; 1}.

Vậy với x ∈ {-3; -2; 0; 1} thì biểu thức A nguyên.

Ví dụ 3: Tìm x để biểu thức đạt giá trị nguyên.

Hướng dẫn giải:

Đkxđ: x ≥ 0.

Ta có:

Ta có: với mọi x

Áp dụng bất đẳng thức Cô-si ta có:

P đạt giá trị nguyên ⇔ P = 1

Vậy với thì biểu thức P đạt giá trị nguyên.

Bài tập trắc nghiệm tự luyện

Bài 1: Giá trị nào của x dưới đây không làm cho biểu thức

nguyên.

A. 1/4    B. 4     C. 2     D. 0.

Đáp án: C

Bài 2: Có bao nhiêu giá trị nguyên của x để biểu thức nguyên?

A. 3    B. 4    C. 6    D. 8

Đáp án: B

Bài 3: Có tất cả bao nhiêu giá trị nguyên của x để biểu thức nguyên?

A. 2    B. 3     C. 4     D. 5

Đáp án: B

Bài 4: Với tất cả các số nguyên x, giá trị nguyên lớn nhất của biểu thức là:

A. 1     B. 2     C. 3    D. 4

Đáp án: D

Bài 5: Có bao nhiêu giá trị của x để biểu thức nguyên?

A. 2     B. Vô số     C. 3     D. 1

Đáp án: B

Bài 6: Tìm các giá trị nguyên của x để các biểu thức dưới đây nguyên:

Hướng dẫn giải:

a) Đkxđ: x ≠ -3.

A ∈ Z ⇔ ⇔ x + 3 ∈ Ư(3) = {-3; -1; 1; 3} ⇔ x ∈ {-6; -4; -2; 0}

b) Đkxđ: x ≠ 1/3 .

B ∈ Z ⇔ ⇔ 1 – 3x ∈ Ư(6) = {-6; -3;-2; -1; 1; 2; 3; 6}

Ta có bảng:

Trong các giá trị trên, chỉ có x = 1 hoặc x = 0 thỏa mãn x nguyên.

Vậy x = 0 hoặc x = 1.

c) ⇔ 2 – 3√x ∈ Ư(2) = {-2; -1; 1; 2}

Ta có bảng sau:

Trong các giá trị trên chỉ có x = 1 hoặc x = 0 thỏa mãn.

Vậy x = 0 hoặc x = 1.

Bài 7: Tìm các giá trị nguyên của x để các biểu thức dưới đây nguyên:

Hướng dẫn giải:

a)

Đkxđ: x ≥ 0; x ≠ 4 .

Ta có: .

M ∈ Z ⇔ ∈ Z ⇔ 2 – √x ∈ Ư(5) = {-5; -1; 1; 5}.

Ta có bảng:

Vậy với x ∈ {49; 9; 1} thì biểu thức M có giá trị nguyên.

b)

Đkxđ: x ≥ 0 ; x ≠ 4 .

Ta có:

N ∈ Z ⇔ ⇔ √x – 2 Ư(7) = {-7; -1; 1; 7}.

Ta có bảng sau:

Vậy với x ∈ {1; 9; 81} thì biểu thức nhận giá trị nguyên.

Bài 8: Tìm các giá trị của x để các biểu thức nguyên

Hướng dẫn giải:

Điều kiện: x ≥ 0 .

Ta có: x – 2√x + 2 = x – 2√x + 1 + 1 = (√x – 1)2 + 1 ≥ 1 > 0

⇒ 0 < P ≤ 3.

P nguyên ⇔ P ∈ {1; 2; 3}.

+ P = 1 ⇔ x – 2√x + 2 = 1 ⇔ x – 2√x + 1 = 0 ⇔ √x – 1 = 0 ⇔ x = 1.

+ P = 2 ⇔ x – 2√x + 2 = 1/4 ⇔ (√x – 1)2 = -3/4 < 0. Vô nghiệm.

+ P = 3 ⇔ x – 2√x + 2 = 1/9 ⇔ (√x – 1)2 = -8/9 < 0. Vô nghiệm.

Vậy chỉ có x = 1 làm cho P nguyên.

Bài 9: Chứng minh rằng biểu thức không nguyên với mọi giá trị của x làm cho biểu thức xác định.

Hướng dẫn giải:

Ta có:

Áp dụng bất đẳng thức Cô-si ta có:

Mà Q > 0 với mọi x.

⇒ 0 < Q ≤ 1/2

Vậy không có giá trị nào của x làm cho Q nguyên.

Bài 10: Cho

a) Rút gọn biểu thức P.

b) Tìm x để biểu thức nguyên.

Hướng dẫn giải:

a) Điều kiện xác định: x > 0; x ≠ 1.

b) Ta có:

Áp dụng bất đẳng thức Cô-si ta có:

⇒ hay 0 < Q ≤ 2.

Q nguyên ⇔ Q = 1 hoặc Q = 2.

+ Q = 1

+ Q = 2

⇔ x = 1 (không t.m đkxđ).

Vậy với thì biểu thức Q có giá trị nguyên.

Mục lục các Chuyên đề Toán lớp 9:

box-most-viewed-courses

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 910

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống