Xem toàn bộ tài liệu Lớp 8: tại đây
- Giải Toán Lớp 8
- Giải Sách Bài Tập Toán Lớp 8
- Sách Giáo Khoa Toán lớp 8 tập 1
- Sách Giáo Khoa Toán lớp 8 tập 2
- Sách Giáo Viên Toán Lớp 8 Tập 1
- Sách Bài Tập Toán Lớp 8 Tập 2
Thời gian làm bài: 90 phút
Bài 1: ( 3đ ) Giải phương trình sau đây :
a) 8( 3x – 2 ) – 14x = 2( 4 – 7x ) + 15x
b) ( 3x – 1 )( x – 3 ) – 9 + x2 = 0
c) |x-2| = 2x-3
Bài 2: ( 1đ ) : Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số :
Bài 3: (1 điểm) Tìm giá trị lớn nhất của A = -x2 + 2x + 9
Bài 4: ( 1,5đ ) : Giải bài toán bằng cách lập phương trình :
Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người ấy giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. Tính quãng đường AB
Bài 5: ( 3,5đ ) :Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD ⊥ AB ( D ∈ AB ). HE ⊥ AC ( E ∈ AC ). AB = 12cm, AC = 16 cm
a) Chứng minh : ΔHAC ∼ ΔABC
b) Chứng minh : AH2 = AD.AB
c) Chứng minh : AD.AB = AE.AC.
d) Tính
Đáp án và Hướng dẫn giải
Bài 1
a) 8( 3x – 2 ) – 14x = 2( 4 – 7x ) + 15x
⇔ 24x – 16 -14x = 8 – 14x + 15x
⇔ 10x -16 = 8 + x
⇔ 9x = 24
⇔ x = 24/9
b) ( 3x – 1 )( x – 3 ) – 9 + x2 = 0
⇔ (3x -1)( x – 3) + (x – 3)( x + 3) = 0
⇔ (x – 3)(3x – 1 + x – 3) = 0
⇔ (x – 3)(4x – 4) = 0
c) |x – 2| = 2x – 3
TH1: x – 2 ≥ 0 ⇔ x ≥ 2
Khi đó: x – 2 = 2x – 3
⇔ 2x – x = -2 + 3
⇔ x = 1 (không TM điều kiện x ≥ 2)
TH2: x – 2 < 0 ⇔ x < 2
Khi đó: x-2 = -(2x – 3)
⇔ x – 2 = -2x + 3
⇔ 3x = 5
⇔ x = 5/3 ( TM điều kiện x < 2)
MTC: x(x-2)
ĐKXĐ: x ≠ 0;x ≠ 2
Đối chiếu với ĐKXĐ thì pt có nghiệm x = – 1
Bài 2
⇔ 2x – 2 – 9x – 15 ≥ 6 – 4x – 5
⇔ 2x – 9x + 4x ≥ 6 – 5 + 2 + 15
⇔ -3x ≥ 18
⇔ x ≤ -6
Vậy tập nghiệm của phương trình là S= {x|x ≤ -6}
Biểu diễn nghiệm trên trục số:
Bài 3: A = -x2 + 2x + 9 = -(x2 – 2x + 1) + 10 = – (x + 1)2 + 10
Ta có: – (x + 1)2 ≤ 0 ∀x
– (x + 1)2 + 10 ≤ 10
Dấu bằng xảy ra khi (x + 1)2 = 0 ⇔ x = -1
Vậy GTLN của A là 10, đạt được khi x = -1
Bài 4
Gọi quãng đường AB là x (km) (x > 0)
Thời gian người đó dự định đi là: x/36 (km)
Vận tốc đi thực tế là: 36 – 6 = 30 (km)
Thời gian thực tế người đó đi là: x/30 (km)
Do đến B chậm hơn dự tính 24’ = 2/5 h nên ta có phương trình:
⇔ 5x + 36 = 6x
⇔ x = 36
Vậy quãng đường AB là 36 km.
Bài 5
a) Xét ΔHAC và ΔABC có:
∠(ACH ) là góc chung
∠(BAC)= ∠(AHC) = 90o
⇒ ΔHAC ∼ ΔABC (g.g)
b) Xét ΔHAD và ΔBAH có:
∠(DAH ) là góc chung
∠(ADH) = ∠(AHB) = 90o
⇒ ΔHAD ∼ ΔBAH (g.g)
c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.
⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)
∠(DEA)= ∠(BAH)
Xét ΔEAD và ΔBAC có:
∠(DEA)= ∠(BAH)
∠(DAE ) là góc chung
ΔEAD ∼ ΔBAC (g.g)
d) ΔEAD ∼ ΔBAC
ΔABC vuông tại A, theo định lí Pytago:
Theo b, ta có: