Xem toàn bộ tài liệu Lớp 12: tại đây
- Sách giáo khoa đại số và giải tích 12
- Sách giáo khoa hình học 12
- Sách giáo khoa giải tích 12 nâng cao
- Sách giáo khoa hình học 12 nâng cao
- Giải Toán Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12
- Sách Giáo Viên Hình Học Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 12 Nâng Cao
- Giải Toán Lớp 12 Nâng Cao
- Sách Bài Tập Giải Tích Lớp 12
- Sách Bài Tập Giải Tích Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12
Sách Giải Sách Bài Tập Toán 12 Đề toán tổng hợp chương 1 giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 1.28 trang 20 Sách bài tập Hình học 12: Hình được tạo thành từ hình lập phương ABCD.A’B’C’D’ khi ta bỏ đi các điểm trong của mặt phẳng (ABCD) có phải là một hình đa diện không?
Lời giải:
Không phải là hình đa diện, vì trong hình đó có cạnh (chẳng hạn AB) không phải là cạnh chung của đúng hai đa giác.
Bài 1.29 trang 20 Sách bài tập Hình học 12: Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.
Lời giải:
Lấy một đỉnh B tùy ý của hình đa diện (H). Gọi M1 là một mặt của hình đa diện (H) chứa B. Gọi A, B, C là ba đỉnh liên tiếp của M1. Khi đó AB, BC là hai cạnh của (H). Gọi M2 là mặt khác với M1 và có chung cạnh AB với M1. Khi đó M2 còn có ít nhất một đỉnh D sao cho A, B, D là ba đỉnh khác nhau liên tiếp của M2. Nếu D ≡ C thì 1 và M2 có hai cạnh chung AB và BC, điều này vô lí. Vậy D phải khác C. Do đó qua đỉnh B có ít nhất ba cạnh BA, BC và BD.
Bài 1.30 trang 20 Sách bài tập Hình học 12: Cho hình lăng trị ABC.A’B’C’ có đáy là tam giác vuông cân ở C. Cạnh B’B = a và tạo với đáy một góc bằng 60o. Hình chiếu vuông góc hạ từ B’ lên đáy trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ đó theo a.
Lời giải:
Gọi G là trọng tâm của tam giác ABC, khi đó
Gọi D là trung điểm của AC, khi đó BD = 3a/4.
Ta có BC2 + CD2 = BD2
do đó
Suy ra
Bài 1.31 trang 20 Sách bài tập Hình học 12: Tính thể tích khối lăng trụ có chiều cao bằng h, đáy là ngũ giác đều nội tiếp trong một đường tròn bán kính r.
Lời giải:
Chia đáy của hình lăng trụ đã cho thành năm tam giác cân có chung đỉnh O là tâm đường tròn ngoại tiếp đáy.
Khi đó diện tích đáy bằng:
Do đó thể tích lăng trụ đó bằng:
Bài 1.32 trang 20 Sách bài tập Hình học 12: Cho hai đoạn thẳng AB và CD chéo nhau, AC là đường vuông góc chung của chúng. Biết rằng AC = h, AB = a, CD = b và góc giữa hai đường thẳng AB và CD bằng 600. Hãy tính thể tích của khối tứ diện ABCD.
Lời giải:
Dựng BE song song và bằng DC, DF song song và bằng BA. Khi đó, ABE.FDC là một lăng trụ đứng.
Ta có:
Bài 1.33 trang 20 Sách bài tập Hình học 12: Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số:
Lời giải:
Gọi cạnh của tứ diện đều ABCD là a thì cạnh của hình bát diện đều (H) là a/2. Khi đó
Từ đó suy ra
Bài 1.34 trang 20 Sách bài tập Hình học 12: Cho tứ diện ABCD. Gọi hA, hB, hC, hD lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng:
Lời giải:
V = VIBCD + VICDA + VIDAB + VIABC
Câu hỏi và bài tập chương 2:
– Thế nào là một mặt tròn xoay? Tìm trong thực tế một ví dụ về mặt tròn xoay.
– Định nghĩa hình nón, hình trụ. Trong thực tế một ví dụ về hình nón, hình trụ
Lời giải:
– Trong mặt phẳng (P) cho hai đường thẳng Δ và l song song với nhau, cách nhau một khoảng bằng r. Khi quay mặt phẳng (P) xung quanh trục Δ thì đường thẳng l sinh ra một mặt tròn xoay gọi là mặt trụ tròn xoay và được gọi tắt là mặt trụ.
– Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục.
Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó.
– Khi quay một tam giác vuông góc AOC một vòng quanh cạnh góc vuông OA cố định thì được một hình nón.
+ Cạnh OC tạo nên đáy của hình nón, là một hình nón tâm O.
+ Cạnh AC quét lên mặt xung quanh của hình nón, mỗi vị trí của nó được gọi là một đường sinh, chẳng hạn AD là một đường sinh .
+ A là đỉnh và AO là đường cao của hình nón.