Xem toàn bộ tài liệu Lớp 8: tại đây
- Giải Toán Lớp 8
- Đề Kiểm Tra Toán Lớp 8
- Sách Giáo Khoa Toán lớp 8 tập 1
- Sách Giáo Khoa Toán lớp 8 tập 2
- Sách Giáo Viên Toán Lớp 8 Tập 1
- Sách Bài Tập Toán Lớp 8 Tập 2
Sách Giải Sách Bài Tập Toán 8 Bài 5: Phương trình chứa ẩn ở mẫu giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 35 trang 11 sách bài tập Toán 8 Tập 2: Em hãy chọn khẳng định đúng trong hai khẳng định sau đây:
a. Hai phương trình tương đương với nhau thì phải có cùng điều kiện xác định.
b. Hai phương trình có cùng điều kiện xác định có thể không tương đương với nhau.
Lời giải:
Phát biểu trong câu b là đúng.
Bài 36 trang 11 sách bài tập Toán 8 Tập 2: Khi giải phương trình , bạn Hà làm như sau:
Theo định nghĩa hai phân thức bằng nhau, ta có:
⇔ (2 – 3x)(2x + 1) = (3x – 2)(- 2x – 3)
⇔ – 6×2 + x + 2 = – 6×2 – 13x – 6 = 0
⇔ 14x = – 8 ⇔ x = – 4/7
Vậy phương trình có nghiệm x = – 4/7 .
Em hãy nhận xét về bài làm của bạn Hà.
Lời giải:
Đáp số của bài toán đúng nhưng lời giải của bạn Hà chưa đầy đủ.
Lời giải của bạn Hà thiếu bước tìm điều kiện xác định và bước đối chiếu giá trị của x tìm được với điều kiện để kết luận nghiệm.
Trong bài toán trên thì điều kiện xác định của phương trình là:
x ≠ – 3/2 và x ≠ – 1/2
So sánh với điều kiện xác định thì giá trị x = – 4/7 thỏa mãn.
Vậy x = – 4/7 là nghiệm của phương trình.
Bài 37 trang 11 sách bài tập Toán 8 Tập 2: Các khẳng định sau đây đúng hay sai:
a. Phương trình
b. Phương trình
c. Phương trình
d. Phương trình
Lời giải:
a. Đúng
Vì x2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x2 – x + 1 = (x – 1/2 )2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2)
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = – 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ – 1
Do vậy phương trình
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình
Bài 38 trang 12 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:
Lời giải:
⇔ 1 – x + 3(x + 1) = 2x + 3
⇔ 1 – x + 3x + 3 – 2x – 3 = 0
⇔ 0x = – 1
Phương trình vô nghiệm.
⇔ (x + 2)2 – (2x – 3) = x2 + 10
x2 + 4x + 4 – 2x + 3 – x2 – 10 = 0
⇔ 2x = 3 ⇔ x = 3/2 (loại)
Phương trình vô nghiệm.
⇔ 5x – 2 + (2x – 1)(1 – x) = 2(1 – x) – 2(x2 + x – 3)
⇔ 5x – 2 + 2x – 2x2 – 1 + x – 2 + 2x + 2×2 + 2x – 6 = 0
⇔ 5x + 2x + x + 2x + 2x = 2 + 6 + 2 + 1 ⇔ 12x = 11
⇔ x = 11/12 (thoả)
Vậy phương trình có nghiệm x = 11/12
⇔ (5 – 2x)(3x – 1) + 3(x + 1)(x – 1) = (x + 2)(1 – 3x)
⇔ 15x – 5 – 6x2 + 2x + 3x2 – 3 = x – 3x2 + 2 – 6x
⇔ – 6x2 + 3x2 + 3x2 + 15x + 2x – x + 6x = 2 + 5 + 3
⇔ 22x = 10 ⇔ x = 5/11 (thỏa)
Vậy phương trình có nghiệm x = 5/11 .
Bài 39 trang 12 sách bài tập Toán 8 Tập 2: a. Tìm x sao cho biểu thức bằng 2.
b. Tìm x sao cho giá trị của hai biểu thức sau bằng nhau:
c. Tìm x sao cho giá trị của hai biểu thức sau bằng nhau:
Lời giải:
⇔ 2x2 – 3x – 2 = 2(x2 – 4) ⇔ 2x2 – 3x – 2 = 2x2 – 8
⇔ 2x2 – 2x2 – 3x = – 8 + 2 ⇔ – 3x = – 6 ⇔ x = 2 (loại)
Vậy không có giá trị nào của x thỏa mãn điều kiện bài toán.
⇔ (6x – 1)(x – 3) = (2x + 5)(3x + 2)
⇔ 6x2 – 18x – x + 3 = 6x2 + 4x + 15x + 10
⇔ 6x2 – 6x2 – 18x – x – 4x – 15x = 10 – 3
⇔ – 38x = 7 ⇔ x = – 7/38 (thỏa)
Vậy khi x = – 7/38 thì giá trị của hai biểu thức
⇔ (y + 5)(y – 3) – (y + 1)(y – 1) = – 8
⇔ y2 – 3y + 5y – 15 – y2 + 1 = – 8
⇔ 2y = 6 ⇔ y = 3 (loại)
Vậy không có giá trị nào của y thỏa mãn điều kiện bài toán.
Bài 40 trang 12 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:
Lời giải:
⇔ (1 – 6x)(x + 2) + (9x + 4)(x – 2) = x(3x – 2) + 1
⇔ x + 2 – 6x2 – 12x + 9x2 – 18x + 4x – 8 = 3x2 – 2x + 1
⇔ – 6x2 + 9x2 – 3x2 + x – 12x – 18x + 4x + 2x = 1 – 2 + 8
⇔ – 23x = 7 ⇔ x = – 7/23 (thỏa)
Vậy phương trình có nghiệm x = – 7/23
⇔ (x + 2)(3 – x) + x(x + 2) = 5x + 2(3 – x)
⇔ 3x – x2 + 6 – 2x + x2 + 2x = 5x + 6 – 2x
⇔ x2 – x2 + 3x – 2x + 2x – 5x + 2x = 6 – 6 ⇔ 0x = 0
Phương trình đã cho có nghiệm đúng với mọi giá trị của x thỏa mãn điều kiện xác định.
Vậy phương trình có nghiệm x ∈ R / x ≠ 3 và x ≠ -2
⇔ 2(x2 + x + 1) + (2x + 3)(x – 1) = (2x – 1)(2x + 1)
⇔ 2x2 + 2x + 2 + 2x2 – 2x + 3x – 3 = 4x2 – 1
⇔ 2x2 + 2x2 – 4x2 + 2x – 2x + 3x = -1 – 2 + 3
⇔ 3x = 0 ⇔ x = 0 (thỏa)
Vậy phương trình có nghiệm x = 0.
⇔ x3 – (x – 1)3 = (7x – 1)(x – 5) – x(4x + 3)
⇔ x3 – x3 + 3x2 – 3x + 1 = 7x2 – 35x – x + 5 – 4x2 – 3x
⇔ 3x2 – 7x2 + 4x2 – 3x + 35x + x + 3x = 5 – 1
⇔ 36x = 4 ⇔ x = 1/9 (thoả)
Vậy phương trình có nghiệm x = 1/9
Bài 41 trang 13 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:
Lời giải:
⇔ (2x + 1)(x + 1) = 5(x – 1)(x – 1)
⇔ 2x2 + 2x + x + 1 = 5x2 – 10x + 5
⇔ 2x2 – 5x2 + 2x + x + 10x + 1 – 5 = 0
⇔ – 3x2 + 13x – 4 = 0 ⇔ 3x2 – x – 12x + 4 = 0
⇔ x(3x – 1) – 4(3x – 1) = 0 ⇔ (x – 4)(3x – 1) = 0
⇔ x – 4 = 0 hoặc 3x – 1 = 0
x – 4 = 0 ⇔ x = 4 (thỏa)
3x – 1 = 0 ⇔ x = 1/3 (thỏa)
Vậy phương trình có nghiệm x = 4 hoặc x = 1/3
⇔ (x – 3)(x – 4) + (x – 2)(x – 2) = – (x – 2)(x – 4)
⇔ x2 – 4x – 3x + 12 + x2 – 2x – 2x + 4 = – x2 + 4x + 2x – 8
⇔ 3x(x – 3) – 8(x – 3) = 0 ⇔ (3x – 8)(x – 3) = 0
⇔ 3x – 8 = 0 hoặc x – 3 = 0
3x – 8 = 0 ⇔ x = 8/3 (thỏa)
x – 3 = 0 ⇔ x = 3 (thỏa)
Vậy phương trình có nghiệm x = 8/3 hoặc x = 3
⇔ x2 + x + 1 + 2x2 – 5 = 4(x – 1)
⇔ x2 + x + 1 + 2x2 – 5 = 4x – 4 ⇔ 3x2 – 3x = 0 ⇔ 3x(x – 1) = 0
⇔ x = 0 (thỏa) hoặc x – 1 = 0 ⇔ x = 1 (loại)
Vậy phương trình có nghiệm x = 0
⇔ 13(x + 3) + x2 – 9 = 6(2x + 7)
⇔ 13x + 39 + x2 – 9 = 12x + 42
⇔ x2 + x – 12 = 0
⇔ x2 – 3x + 4x – 12 = 0
⇔ x(x – 3) + 4(x – 3) = 0
⇔ (x + 4)(x – 3) = 0
⇔ x + 4 = 0 hoặc x – 3 = 0
x + 4 = 0 ⇔ x = -4 (thỏa)
x – 3 = 0 ⇔ x = 3 (loại)
Vậy phương trình có nghiệm x = -4.
Bài 42 trang 13 sách bài tập Toán 8 Tập 2: Cho phương trình ẩn x:
a. Giải phương trình khi a = – 3
b. Giải phương trình khi a = 1
c. Giải phương trình khi a = 0
d. Tìm giá trị của a sao cho phương trình nhận x = 1/2 là nghiệm.
Lời giải:
a. Khi a = – 3, ta có phương trình:
⇔ (3 – x)(x – 3) + (x + 3)2 = -24
⇔ 3x – 9 – x2 + 3x + x2 + 6x + 9 = -24 ⇔ 12x = – 24
⇔ x = -2 (thỏa)
Vậy phương trình có nghiệm x = -2
b. Khi a = 1, ta có phương trình:
⇔ (x + 1)2 + (x – 1)(1 – x) = 4
⇔ x2 + 2x + 1 + x – x2 – 1 + x = 4
⇔ 4x = 4 ⇔ x = 1 (loại)
Vậy phương trình vô nghiệm.
c. Khi a = 0, ta có phương trình:
⇔ – x2 + x2 = 0 ⇔ 0x = 0
Phương trình nghiệm đúng với mọi giá trị của x ≠ 0
Vậy phương trình có nghiệm x ∈ R / x ≠ 0.
d. Thay x = 1/2 vào phương trình, ta có:
⇔ (1 + 2a)(2a + 1) + (1 – 2a)(2a – 1) = 4a(3a + 1)
⇔ 2a + 1 + 4a2 + 2a + 2a – 1 – 4a2 + 2a = 12a2 + 4a
⇔ 12a2 – 4a = 0 ⇔ 4a(3a – 1) = 0 ⇔ 4a = 0 hoặc 3a – 1 = 0
⇔ a = 0 (thỏa) hoặc a = 1/3 (thỏa)
Vậy khi a = 0 hoặc a = 1/3 thì phương trình
Bài 5.1 trang 13 sách bài tập Toán 8 Tập 2: Giải các phương trình:
Lời giải:
a. Ta có:
ĐKXĐ của phương trình là x ≠ 2,x ≠ 1/2,x ≠ ±1,x ≠ 13.
Ta biến đổi phương trình đã cho thành a. Ta có:
Khử mẫu và rút gọn:
(2x − 1)(3x − 1) = 6(x2 − 1)
⇔−5x + 1 = −6 ⇔ x = 7/5
Giá trị x = 7/5 thỏa mãn ĐKXĐ.
Vậy phương trình có nghiệm là x = 7/5
b. Cách 1. ĐKXĐ: x≠ ± 1. Biến đổi vế trái thành a
Ta đưa phương trình đã cho về dạng
Giải phương trình này bằng cách khử mẫu:
4(x + 1) = (x − 1)(x + 1)
⇔(x + 1)(x − 5) = 0
⇔x = −1 hoặc x = 5
Trong hai giá trị vừa tìm được, chỉ có x = 5 là thỏa mãn ĐKXĐ.
Vậy phương trình đã cho có một nghiệm duy nhất x = 5.
Cách 2. Đặt
ĐKXĐ của phương trình này là y ≠ 0 và y ≠ −1. Giải phương trình này bằng cách khử mẫu:
2y2 − 2 = 1 + y
⇔2(y2 − 1)−(y + 1) = 0
⇔(y + 1)(2y − 3) = 0
⇔y = −1 hoặc y = 32
Trong hai giá trị tìm được, chỉ có y = 32 là thỏa mãn ĐKXĐ
Vậy phương trình đã cho tương đương với phương trình
Giải phương trình này ta được x = 5
c. ĐKXĐ: x∈{0;−1;−2;−3}. Ta biến đổi phương trình như sau:
Ta có:
(1) ⇔x = −5
Tóm lại, phương trình đã cho có tập nghiệm là S = {−5;−3/2}