Chương 2: Tổ hợp – xác suất

Xem toàn bộ tài liệu Lớp 11: tại đây

Sách giải toán 11 Bài 5: Xác suất của biến cố giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 11 Đại số Bài 5 trang 66: Từ một hộp chứa bốn quả cầu ghi chứ a, hai quả cầu ghi chữ b và hai quả cầu ghi chữ c (h.34), lấy ngẫu nhiên một quả. Kí hiệu:

A: “Lấy được quả ghi chữ a”;

B: “Lấy được quả ghi chữ b”;

C: “Lấy được quả ghi chữ c”.

Có nhận xét gì về khả năng xảy ra của các biến cố A, B và C? Hãy so sánh chúng với nhau. Giải bài tập Toán 11 | Giải Toán lớp 11 Tra Loi Cau Hoi Toan 11 Dai So Bai 5 Trang 66

Lời giải:

Khả năng xảy ra của biến cố A là: 4/8 = 0,5

Khả năng xảy ra của biến cố B là: 2/8 = 0,25

Khả năng xảy ra của biến cố C là: 2/8 = 0,25

⇒ Khả năng xảy ra của biến cố A lớn hơn khả năng xảy ra của biến cố B

Và khả năng xảy ra của biến cố B bằng khả năng xảy ra của biến cố C

a) P(∅) = 0, P(Ω) = 1.

b) 0 ≤ P(A) ≤ 1, với mọi biến cố A.

c) Nếu A và B xung khắc, thì

P(A ∪ B) = P(A) + P(B) (công thức cộng xác suất).

Lời giải:

Theo định nghĩa xác suất của biến cố ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11 Tra Loi Cau Hoi Toan 11 Dai So Bai 5 Trang 69

Bài 1 (trang 74 SGK Đại số 11): Gieo ngẫu nhien một con súc sắc cân đối và đồng chất hai lần.

a.Hãy mô tả không gian mẫu.

b.Xác định các biến cố sau.

A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”

B: “Mặt 5 chấm xuất hiện ít nhất một lần”.

c.Tính P(A), P(B).

Lời giải:

a. Không gian mẫu gồm 36 kết quả đồng khả năng xuất hiện, được mô tả như sau:

Ta có: Ω = {(i, j) | 1 ≤ i , j ≤ 6}, trong đó i, j lần lượt là số chấm xuất hiện trong lần gieo thứ nhất và thứ hai, n(Ω) = 36.

b. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} ⇒ n(A) = 6

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 1 Trang 74 Sgk Dai So 11

B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)}

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 1 Trang 74 Sgk Dai So 11 1

Bài 2 (trang 74 SGK Đại số 11): Có 4 tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên 3 tấm.

a. Hãy mô tả không gian mẫu.

b. Xác định các biến cố sau:

A: “Tổng các số trên 3 tấm bìa bằng 8”

B: “Các số trên 3 tấm bìa là ba số tự nhiên liên tiếp”

c.Tính P(A), P(B).

Lời giải:

a.Không gian mẫu gồm 4 phần tử:

Ω = {(1, 2, 3);(1,2,4);(2,3,4);(1,3,4)} ⇒ n(Ω)=4

b.Các biến cố:

+ A = {1, 3, 4} ⇒ n(A) = 1

Giải bài 2 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 2 Trang 74 Sgk Dai So 11

+ B = {(1, 2, 3), (2, 3, 4)} ⇒ n(B) = 1

Giải bài 2 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 2 Trang 74 Sgk Dai So 11 1

Bài 3 (trang 74 SGK Đại số 11): Một người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau. Tính xác suất để hai chiếc chọn được tạo thành một đôi.

Lời giải:

Không gian mẫu là kết quả của việc chọn ngẫu nhiên 2 chiếc giày trong số 8 chiếc giày.

Giải bài 3 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 4 Trang 74 Sgk Dai So 11 3

A: “ Chọn được 2 chiếc tạo thành một đôi”

⇒ n(A) = 4 (Vì có 4 đôi).

Giải bài 3 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 4 Trang 74 Sgk Dai So 11 4

Bài 4 (trang 74 SGK Đại số 11): Gieo một con súc sắc cân đối và đồng nhất. giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình x2 + bx + 2 = 0. Tính xác suất sao cho:

a. Phương trình có nghiệm

b. Phương trình vô nghiệm

c. Phương tring có nghiệm nguyên.

Lời giải:

Không gian mẫu khi gieo con súc sắc cân đối và đồng chất:

Ω = {1, 2, 3, 4, 5, 6}

⇒ n(Ω) = 6

Đặt A: “con súc sắc xuất hiện mặt b chấm”;

Xét : x2 + bx + 2 = 0 (1)

Δ = b2 – 8

a. Phương trình (1) có nghiệm

⇔ Δ ≥ 0 ⇔ b ≥ 2√2

⇒ b ∈ {3; 4; 5; 6}.

⇒ A = {3, 4, 5, 6}

⇒ n(A) = 4

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 4 Trang 74 Sgk Dai So 11 5

b. (1) vô nghiệm

⇔ Δ < 0 ⇔ b ≤ 2√2

⇒ b ∈ {1; 2}

⇒ A = {1, 2}

⇒ n(A) = 2

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 4 Trang 74 Sgk Dai So 11 6

c. phương trình (1) có nghiệm

⇔ b ∈ {3; 4; 5; 6}.

Thử các giá trị của b ta thấy chỉ có b = 3 phương trình cho nghiệm nguyên.

⇒ A = {3}

⇒ n(A) = 1

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11 Bai 4 Trang 74 Sgk Dai So 11 7

Bài 5 (trang 74 SGK Đại số 11): Từ cỗ bài tú lơ khơ 52 con, rút ngẫu nhiên cùng một lúc bốn con. Tính xác suất sao cho:

a. Cả bốn con đều là át.

b. Được ít nhất là một con át.

c. Được hai con át và hai con K

Lời giải:

Không gian mẫu là kết quả của việc chọn ngẫu nhiên 4 con trong số 52 con

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 5 Trang 74 Sgk Dai So 11 5

a. Đặt A : « Cả 4 con lấy ra đều là át »

⇒ n(A) = 1

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 5 Trang 74 Sgk Dai So 11 6

b. + B : « Không có con át nào trong 4 con khi lấy ra »

⇒ B là kết quả của việc chọn ngẫu nhiên 4 con trong số 48 con còn lại

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 5 Trang 74 Sgk Dai So 11 7

c. C: “Rút được 2 con át và 2 con K”.

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 5 Trang 74 Sgk Dai So 11 8

Bài 6 (trang 74 SGK Đại số 11): Hai bạn nam và hai bạn nữ được xếp ngồi ngẫu nhiên vào bốn ghế xếp thành hai dãy đối diện nhau. Tính xác suất sao cho:

a. Nam, nữ ngồi đối diện nhau.

b. Nữ ngồi đối diện nhau.

Lời giải:

a. Có 4 cách xếp nam nữ ngồi đối diện nhau. Xác suất để nam, nữ ngồi đối diện nhau là:

P(A) = 4/6 = 2/3

b. Xác suất để nữ ngồi đối diện nhau (hai nam cũng đối diện nhau) là:

P(B) = 1 – P(A) = 1 – 2/3 = 1/3

Bài 7(trang 75 SGK Đại số 11): Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 6 quả trắng, 4 quả đen. Hộp thứ hai chứa 4 quả trắng, 6 quả đen. Từ mỗi hộp lấy ngẫu nhiên một quả. Kí hiệu:

A là biến cố: “Qủa lấy từ hộp thứ nhất trắng”

B là biến cố: “Qủa lấy từ hộp thứ hai trắng”

a. Xem xét A và B có độc lập không?

b. Tính xác suất sao cho hai quả cầu lấy ra cùng màu.

c. Tính xác suất sao cho hai quả cầu lấy ra khác màu.

Lời giải:

a. Số phần tử của không gian mẫu là: 10 × 10 = 100

Số trường hợp lấy ra một quả cầu trắng ở hộp thứ nhất là 6

Số trường hợp lấy ra 1 quả cầu ở hộp thứ hai là 10. Số trường hợp lấy ra quả cầu ở hộp thứ nhất trắng kết hợp với một quả cầu bất kỳ ở hộp thứ hai là 6 × 10 = 60

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 7 Trang 75 Sgk Dai So 11

Số trường hợp lấy ra quả cầu thứ hai trắng với một quả cầu bất kì ở hộp thứ nhất là 4 × 10 = 40

Biến cố A.B là lấy ra quả cầu ở hộp thứ nhất trắng và quả cầu ở hộp thứ hai là trắng:

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 7 Trang 75 Sgk Dai So 11 1

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 7 Trang 75 Sgk Dai So 11 2

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 7 Trang 75 Sgk Dai So 11 3

b. Gọi A1 là biến cố hai quả cầu lấy ra cùng trắng.

A2 là biến cố hai quả cầu lấy ra cùng đen

Rõ ràng A1 và A2 xung khắc A A1 ∩ A2 là biến cố hai quả cầu lấy ra cùng màu.

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 7 Trang 75 Sgk Dai So 11 4

c. Gọi B là biến cố lấy ra hai quả cầu khác màu.

Giải bài tập Đại số 11 | Để học tốt Toán 11 Bai 7 Trang 75 Sgk Dai So 11 5

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1001

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Print Friendly, PDF & Email