Xem toàn bộ tài liệu Lớp 12: tại đây
- Sách giáo khoa đại số và giải tích 12
- Sách giáo khoa hình học 12
- Sách giáo khoa giải tích 12 nâng cao
- Sách giáo khoa hình học 12 nâng cao
- Giải Sách Bài Tập Toán Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12
- Sách Giáo Viên Hình Học Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 12 Nâng Cao
- Giải Toán Lớp 12 Nâng Cao
- Sách Bài Tập Giải Tích Lớp 12
- Sách Bài Tập Giải Tích Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12
Sách giải toán 12 Bài 12: Bất phương trình mũ và bất phương trình lôgarit giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 12 Giải tích Bài 6 trang 86: Hãy lập bảng tương tự cho các bất phương trình ax ≥ b, ax < b, ax ≤ b.
Lời giải:
ax > b | Tập nghiệm | |
a > 1 | 0 < a < 1 | |
b ≤ 0 | R | R |
b > 0 | [logab ; +∞) | (-∞,logab] |
ax < b | Tập nghiệm | |
a > 1 | 0 < a < 1 | |
b ≤ 0 | Vô nghiệm | Vô nghiệm |
b > 0 | (-∞,logab) | (logab ; +∞) |
ax ≤ b | Tập nghiệm | |
a > 1 | 0 < a < 1 | |
b ≤ 0 | Vô nghiệm | Vô nghiệm |
b > 0 | (-∞,logab] | [logab ; +∞) |
Lời giải:
Đặt 2x = t. ĐK: t > 0. Ta có phương trình đã cho tương đương với phương trình:
Lời giải:
logax ≥ b | a > 1 | 0 < a < 1 |
Nghiệm | x ≥ ab | 0 < x ≤ ab |
logax < b | a > 1 | 0 < a < 1 |
Nghiệm | 0 < x < ab | x > ab |
logax ≤ b | a > 1 | 0 < a < 1 |
Nghiệm | 0 < x ≤ ab | x ≥ ab |
Lời giải:
(1) ⇔ 3x + 1 < 2x + 3 ⇔ x < -2.
Bài 1 (trang 89 SGK Giải tích 12): Tính
Lời giải:
Vậy phương trình có tập nghiệm S = (-∞; 0) ∪ (1; +∞)
Vậy bất phương trình có tập nghiệm
Vậy bất phương trình có tập nghiệm (-∞; 1]
Vậy bất phương trình có tập nghiệm S = (-∞; 0) ∪ (1; +∞)
Bài 2 (trang 90 SGK Giải tích 12): Giải các bất phương trình:
Lời giải:
Vậy bất phương trình có tập nghiệm (-∞; -30)
Kết hợp với điều kiện xác định được x > 3.
Vậy bất phương trình có tập nghiệm (3; +∞).
d) Điều kiện: x > 0.
(Bất phương trình bậc hai ẩn log3x).
Vậy bất phương trình có tập nghiệm [9; 27].