Phần Đại số – Chương 3: Phương trình bậc nhất một ẩn

Xem toàn bộ tài liệu Lớp 8: tại đây

Sách giải toán 8 Luyện tập (trang 22-23) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Bài 5: Phương trình chứa ẩn ở mẫu

Luyện tập (trang 22-23 sgk Toán 8 Tập 2)

Bài 29 (trang 22-23 SGK Toán 8 tập 2): Bạn Sơn giải phương trình

Bạn Hà cho rằng Sơn giải sai vì đã nhân hai vế với biểu thức x – 5 có chứa ẩn. Hà giải bằng cách rút gọn vế trái như sau:

Lời giải:

Bài 5: Phương trình chứa ẩn ở mẫu

Luyện tập (trang 22-23 sgk Toán 8 Tập 2)

Bài 30 (trang 23 SGK Toán 8 tập 2): Giải các phương trình:

Lời giải:

a) Điều kiện xác định: x ≠ 2.

⇔ 1 + 3(x – 2) = -(x – 3)

⇔ 1 + 3x – 6 = -x + 3

⇔ 3x + x = 3 + 6 – 1

⇔ 4x = 8

⇔ x = 2 (không thỏa mãn đkxđ).

Vậy phương trình vô nghiệm.

b) Điều kiện xác định: x ≠ -3.

⇔ 14x(x + 3) – 14x2 = 28x + 2(x + 3)

⇔ 14x2 + 42x – 14x2 = 28x + 2x + 6

⇔ 42x – 28x – 2x = 6

⇔ 12x = 6

⇔ x = 1/2.

Vậy phương trình có tập nghiệm S = {1/2}.

Bài 5: Phương trình chứa ẩn ở mẫu

Luyện tập (trang 22-23 sgk Toán 8 Tập 2)

Bài 31 (trang 23 SGK Toán 8 tập 2): Giải các phương trình:

Lời giải:

a) + Tìm điều kiện xác định :

x2 + x + 1 = (x2 + x + ¼) + ¾ = (x + ½)2 + ¾ > 0 với mọi x ∈ R.

Do đó x2 + x + 1 ≠ 0 với mọi x ∈ R.

x3 – 1 ≠ 0 ⇔ (x – 1)(x2 + x + 1) ≠ 0 ⇔ x – 1 ≠ 0 ⇔ x ≠ 1.

Vậy điều kiện xác định của phương trình là x ≠ 1.

+ Giải phương trình:

⇔ x2 + x + 1 – 3x2 = 2x(x – 1)

⇔ -2x2 + x + 1 = 2x2 – 2x

⇔ 4x2 – 3x – 1 = 0

⇔ 4x2 – 4x + x – 1 = 0

⇔ 4x(x – 1) + x – 1 = 0

⇔ (4x + 1)(x – 1) = 0

⇔ 4x + 1 = 0 hoặc x – 1 = 0

4x + 1 = 0 ⇔ 4x = -1 ⇔ x = -1/4 (thỏa mãn đkxđ)

x – 1 = 0 ⇔ x = 1 (không thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {1}.

b) Điều kiện xác định: x ≠ 1; x ≠ 2; x ≠ 3.

⇔ 3(x – 3) + 2(x – 2) = x – 1

⇔ 3x – 9 + 2x – 4 = x – 1

⇔ 3x + 2x – x = 9 + 4 – 1

⇔ 4x = 12

⇔ x = 3 (không thỏa mãn điều kiện xác định)

Vậy phương trình vô nghiệm.

c) Điều kiện xác định: x ≠ -2.

⇔ x3 + x2 + 2x + 12 = 12

⇔ x3 + x2 + 2x = 0

⇔ x(x2 + x + 2) = 0

⇔ x = 0 (vì x2 + x + 2 > 0 với mọi x) (thỏa mãn đkxđ).

Vậy tập nghiệm của phương trình là S = {0}.

d) Điều kiện xác định: x ≠ ±3; x ≠ -7/2.

⇔ 13(x + 3) + (x – 3)(x + 3) = 6(2x + 7)

⇔ 13x + 39 + x2 – 9 = 12x + 42

⇔ x2 + x – 12 = 0

⇔ x2 +4x – 3x – 12 = 0

⇔ x(x + 4) – 3(x + 4) = 0

⇔ (x – 3)(x + 4) = 0

⇔ x – 3 = 0 hoặc x + 4 = 0

x – 3 = 0 ⇔ x = 3 (không thỏa mãn đkxđ)

x + 4 = 0 ⇔ x = -4 (thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {-4}.

Bài 5: Phương trình chứa ẩn ở mẫu

Luyện tập (trang 22-23 sgk Toán 8 Tập 2)

Bài 32 (trang 23 SGK Toán 8 tập 2): Giải các phương trình:

Lời giải:


Bài 5: Phương trình chứa ẩn ở mẫu

Luyện tập (trang 22-23 sgk Toán 8 Tập 2)

Bài 33 (trang 23 SGK Toán 8 tập 2): Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:

Lời giải:

Biểu thức có giá trị bằng 2 thì:


 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 998

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống