Phần Hình học – Chương 1: Tứ giác

Xem toàn bộ tài liệu Lớp 8: tại đây

Sách giải toán 8 Luyện tập (trang 75) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Bài 16 (trang 75 SGK Toán 8 Tập 1): Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Lời giải:

– Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A

BD là phân giác của

CE là phân giác của

+ Xét ΔAEC và ΔADB có:

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

– Chứng minh ED = EB.

ED // BC ⇒

(Hai góc so le trong)

⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

Các bài giải Toán 8 Bài 3 khác

Bài 17 (trang 75 SGK Toán 8 Tập 1): Hình thang ABCD (AB // CD) có

Chứng minh rằng ABCD là hình thang cân.

Lời giải:

Gọi E là giao điểm của AC và BD.

+ ⇒ ΔEDC cân tại E ⇒ ED = EC (1)

+ AB//CD ⇒ (Các cặp góc so le trong)

⇒ ΔEAB cân tại E ⇒ EA = EB (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

Các bài giải Toán 8 Bài 3 khác

Bài 18 (trang 75 SGK Toán 8 Tập 1): Chứng minh định lý: “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E. Chứng minh rằng:

a) ΔBDE là tam giác cân.

b) ΔACD = ΔBDC

c) Hình thang ABCD là hình thang cân.

Lời giải:

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Các bài giải Toán 8 Bài 3 khác

Bài 19 (trang 75 SGK Toán 8 Tập 1): Đố. Cho ba điểm A, D, K trên giấy kẻ ô vuông (h.32) Hãy tìm điểm thứ tư M giao điểm của các dòng kẻ sao cho nó cùng với ba diểm đã cho là bốn đỉnh của một hình thang cân.

Lời giải:

Ta có thể xác định hai điểm M thỏa mãn như dưới hình.

Các bài giải Toán 8 Bài 3 khác

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1132

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống