Phần Đại số – Chương 3: Phương trình bậc nhất một ẩn

Xem toàn bộ tài liệu Lớp 8: tại đây

Sách giải toán 8 Ôn tập chương 3 (Câu hỏi – Bài tập) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Ôn tập chương 3 (Câu hỏi – Bài tập)

A – Câu hỏi ôn tập chương 3

1. Thế nào là hai phương trình tương đương?

Trả lời:

Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

2. Nhân hai vế của một phương trình với cùng một biểu thức chứa ẩn thì có thể không được phương trình tương đương. Em hãy cho một ví dụ.

Trả lời:

Ví dụ: phương trình (1) x – 1 = 3 có tập nghiệm S1 = {4}.

Nhân hai vế của phương trình (1) với x, ta được phương trình:

(x – 1)x = 3x (2)

⇔ (x – 1)x – 3x = 0

⇔ x(x – 4) = 0

Phương trình (2) có tập nghiệm là S2 = {0, 4}.

Vì S1 ≠ S2 nên hai phương trình (1) và (2) không tương đương.

3. Với điều kiện nào của a thì phương trình ax + b = 0 là một phương trình bậc nhất? (a và b là hai hằng số).

Trả lời:

Với điều kiện a ≠ 0 thì phương trình ax + b = 0 là một phương trình bậc nhất.

4. Một phương trình bậc nhất một ẩn có mấy nghiệm? Đánh dấu “x” vào ô vuông ứng với câu trả lời đúng:

Trả lời:

Ô vuông thứ 2: Một phương trình bậc nhất một ẩn luôn có một nghiệm duy nhất.

(Bạn cần lưu ý vì đây là phương trình bậc nhất một ẩn nên a ≠ 0, do đó phương trình luôn có một nghiệm duy nhất. Không có trường hợp a = 0 nhé.)

5. Khi giải phương trình chứa ẩn ở mẫu, ta phải chú ý điều gì?

Trả lời:

Khi giải phương trình chứa ẩn ở mẫu, ta phải chú ý đến điều kiện xác định của phương trình.

6. Hãy nêu các bước giải bài toán bằng cách lập phương trình.

Trả lời:

Bước 1. Lập phương trình.

– Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;

– Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

– Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không thỏa mãn, rồi kết luận.

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 50 (trang 33 SGK Toán 8 tập 2): Giải các phương trình:

Lời giải:

a) 3 – 4x(25 – 2x) = 8×2 + x – 300

⇔ 3 – 4x.25 + 4x.2x = 8×2 + x – 300

⇔ 3 – 100x + 8×2 = 8×2 + x – 300

⇔ 3 + 300 = 100x + x

⇔ 303 = 101x

⇔ x = 3.

Vậy phương trình có tập nghiệm S = {3}.

⇔ 8(1 – 3x) – 2(2 + 3x) = 140 – 15(2x + 1)

⇔ 8 – 24x – 4 – 6x = 140 – 30x – 15

⇔ 30x – 24x – 6x = 140 – 15 + 4 – 8

⇔ 0x = 121

Vậy phương trình vô nghiệm.

⇔ 5(5x + 2) – 10(8x – 1) = 6(4x + 2) – 150

⇔ 25x + 10 – 80x + 10 = 24x + 12 – 150

⇔ 25x – 80x – 24x = 12 – 150 – 10 – 10

⇔ -79x = -158

⇔ x = 2.

Vậy phương trình có tập nghiệm S = {2}.

⇔ 3(3x + 2) – (3x + 1) = 12x + 10

⇔ 9x + 6 – 3x – 1 = 12x + 10

⇔ 9x – 3x – 12x = 10 + 1 – 6

⇔ -6x = 5

Vậy phương trình có tập nghiệm

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 51 (trang 33 SGK Toán 8 tập 2): Giải các phương trình sau bằng cách đưa về phương trình tích:

Lời giải:

a) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)

⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0

⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0

⇔ (2x + 1).(3x – 2 – 5x + 8) = 0

⇔ (2x + 1)(6 – 2x) = 0

⇔ 2x + 1 = 0 hoặc 6 – 2x = 0

   + 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.

   + 6 – 2x = 0 ⇔ 6 = 2x ⇔ x = 3.

Vậy phương trình có tập nghiệm

b) 4x2 – 1 = (2x + 1)(3x – 5)

⇔ 4x2 – 1 – (2x + 1)(3x – 5) = 0

⇔ (2x – 1)(2x + 1) – (2x + 1)(3x – 5) = 0

⇔ (2x + 1)[(2x – 1) – (3x – 5)] = 0

⇔ (2x + 1)(2x – 1 – 3x + 5) = 0

⇔ (2x + 1)(4 – x) = 0

⇔ 2x + 1= 0 hoặc 4 – x = 0

   + 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.

   + 4 – x = 0 ⇔ x = 4.

Vậy phương trình có tập nghiệm

c) (x + 1)2 = 4(x2 – 2x + 1)

⇔ (x + 1)2 = 4(x – 1)2

⇔ 4(x – 1)2 – (x + 1)2 = 0 (hằng đẳng thức)

⇔ [2(x – 1) – (x + 1)].[2(x – 1) + (x + 1)] = 0

⇔ (2x – 2 – x – 1)(2x – 2 + x + 1) = 0

⇔ (x – 3)(3x – 1) = 0

⇔ x – 3 = 0 hoặc 3x – 1 = 0

   + x – 3 = 0 ⇔ x = 3.

   + 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3.

Vậy phương trình có tập nghiệm

d) 2x3 + 5x2 – 3x = 0

⇔ x(2x2 + 5x – 3) = 0

⇔ x.(2x2 + 6x – x – 3) = 0

⇔ x. [2x(x + 3) – (x + 3)] = 0

⇔ x.(2x – 1)(x + 3) = 0

⇔ x = 0 hoặc 2x – 1 = 0 hoặc x + 3 = 0

   + 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

   + x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 52 (trang 33 SGK Toán 8 tập 2): Giải các phương trình:

Lời giải:

a) Điều kiện xác định: x ≠ 0 và x ≠ 3/2.

Vậy phương trình có tập nghiệm

b) Điều kiện xác định: x ≠ 0; x ≠ 2.

⇔ x(x + 2) – (x – 2) = 2

⇔ x2 + 2x – x + 2 = 2

⇔ x2 + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0.

   + x = 0 không thỏa mãn điều kiện xác định.

   + x + 1 = 0 ⇔ x = -1 (thỏa mãn điều kiện xác định).

Vậy phương trình có tập nghiệm S = {-1}.

c) Điều kiện xác định: x ≠ ±2.

⇔ (x + 1)(x + 2) + (x – 1)(x – 2) = 2(x2 + 2)

⇔ x2 + x + 2x + 2 + x2 – x – 2x + 2 = 2x2 + 4

⇔ 0x = 0.

Vậy phương trình nghiệm đúng với mọi x ≠ ±2.

d) Điều kiện xác định: x ≠ 2/7.

⇔ 10 – 4x = 0 ⇔ x = 5/2 (thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm là

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 53 (trang 34 SGK Toán 8 tập 2): Giải phương trình:

Lời giải:

Vậy phương trình có nghiệm duy nhất là x = -10.

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 54 (trang 34 SGK Toán 8 tập 2): Một canô xuôi dòng từ bến A đến bến B mất 4 giờ và ngược dòng từ bến B về bến A mất 5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2 km/h.

Lời giải:

Gọi x (km) là khoảng cách giữa hai bến A và B, với x > 0.

x = 80 thỏa mãn điều kiện.

Vậy khoảng cách giữa hai bến A và B là 80km.

(Giải thích tại sao hiệu vận tốc xuôi dòng và ngược dòng bằng 2 lần vận tốc dòng nước:

Nếu gọi vận tốc canô là v (km/h), vận tốc dòng nước là a (km/h), ta có:

Khi xuôi dòng: vận tốc canô = v + a

Khi ngược dòng: vận tốc canô = v – a

Hiệu vận tốc = v + a – (v – a) = 2a = 2 vận tốc dòng nước.)

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 55 (trang 34 SGK Toán 8 tập 2): Biết rằng 200g một dung dịch chứa 50g muối. Hỏi phải pha thêm bao nhiêu gam nước vào dung dịch đó để được một dung dịch chứa 20% muối?

Lời giải:

Gọi x (g) là khối lượng nước phải pha thêm, với x > 0.

Khối lượng dung dịch mới: 200 + x

Ta có: nồng độ dung dịch = số g muối / số g dung dịch.

Vì khối lượng muối không đổi nên nồng độ dung dịch sau khi pha thêm nước bằng

Theo đề bài, nồng độ dung dịch mới bằng 20% nên ta có phương trình:

Vậy phải pha thêm 50g nước để được dung dịch chứa 20% muối.

Ôn tập chương 3 (Câu hỏi – Bài tập)

B – Phần bài tập

Bài 56 (trang 34 SGK Toán 8 tập 2): Để khuyến khích tiết kiệm điện, giá điện sinh hoạt được tính theo kiểu lũy tiến, nghĩa là nếu người sử dụng càng nhiều điện thì giá mỗi số điện (1kw/h) càng tăng lên theo các mức như sau:

Mức thứ nhất: Tính cho 100 số điện đầu tiên;

Mức thứ hai: Tính cho số điện thứ 101 đến 150, mỗi số đắt hơn 150 đồng so với mức thứ nhất;

Mức thứ ba: Tính cho số điện thứ 151 đến 200, mỗi số đắt hơn 200 đồng so với mức thứ hai;

v.v…

Ngoài ra người sử dụng còn phải trả thêm 10% thuế giá trị gia tăng (thuế VAT).

Tháng vừa qua, nhà Cường dùng hết 165 số điện và phải trả 95700 đồng. Hỏi mỗi số điện ở mức thứ nhất giá là bao nhiêu?

Lời giải:

Gọi x (đồng) là giá mỗi số điện ở mức thứ nhất (x > 0).

⇒ Giá mỗi số điện ở mức 2 là: x + 150 (đồng)

⇒ Giá mỗi số điện ở mức 3 là: x + 150 + 200 = x + 350 (đồng)

Nhà Cường dùng hết 165 số điện = 100 + 50 + 15.

Như vậy nhà Cường phải đóng cho 100 số điện ở mức 1, 50 số điện ở mức 2 và 15 số điện ở mức 3.

⇒ Số tiền điện (chưa tính VAT) của nhà Cường bằng:

   100.x + 50.(x + 150) + 15.(x + 350) = 165x + 12750.

Thuế VAT nhà Cường phải trả là: (165x + 12750).10%

Tổng số tiền điện nhà Cường phải đóng (tiền gốc + thuế) bằng:

   165x + 12750 + (165x + 12750).10% = 1,1.(165x + 12750).

Thực tế nhà Cường hết 95700 đồng nên ta có phương trình:

   1,1(165x + 12750) = 95700

   ⇔ 165x + 12750 = 87000

   ⇔ 165x = 74250

   ⇔ x = 450 (đồng) (thỏa mãn điều kiện).

Vậy mỗi số điện ở mức giá đầu tiên là 450 đồng.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1013

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống