Phần Số học – Chương 1: Ôn tập và bổ túc về số tự nhiên

Xem toàn bộ tài liệu Lớp 6: tại đây

A. Lý thuyết

1. Nhận xét mở đầu

Nhận xét: Mọi số đều được viết dưới dạng tổng các chữ số của nó cộng với một số chia hết cho 9.

Ví dụ:

Ta có: 378 = 3.100 + 7.10 + 8 = 3.(99 + 1) + 7.(9 + 1) + 8

= 3.99 + 3 + 7.9 + 7 + 8

= (3 + 7 + 8) + (3.11.9 + 7.9)

= (tổng các chữ số) + (số chia hết cho 9)

2. Dấu hiệu chia hết cho 9

Dấu hiệu: Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó chia hết cho 9.

Ví dụ:

   + Số 792 có tổng các chữ số là 7 + 9 + 2 = 18 chia hết cho 9 thì số 792 chia hết cho 9.

   + Số 108 có tổng các chữ số là 1 + 0 + 8 = 10 chia hết cho 9 thì số 108 chia hết cho 9.

3. Dấu hiệu chia hết cho 3

Dấu hiệu: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó chia hết cho 3.

Ví dụ:

   + Số 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 thì số 102 chia hết cho 3.

   + Số 321 có tổng các chữ số là 3 + 2 + 1 = 6 chia hết cho 6 thì số 321 chia hết cho 3.

B. Trắc nghiệm & Tự luận

I. Câu hỏi trắc nghiệm

Câu 1: Trong các số 333; 354; 360; 2457; 1617; 152, số nào chia hết cho 9

A. 333        B. 360        C. 2457        D. Cả A, B, C đúng

        + Số 333 có tổng các chữ số là 3 + 3 + 3 = 9 ⋮ 9 nên 333 chia hết cho 9.

        + Số 360 có tổng các chữ số là 3 + 6 + 0 = 9 ⋮ 9 nên 360 chia hết cho 9.

        + Số 2475 có tổng các chữ số là 2 + 4 + 7 + 5 = 18 ⋮ 9 nên 2475 chia hết cho 9.

Chọn đáp án D.

Câu 2: Cho 5 số 0;1;3;6;7. Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 3 được lập từ các số trên mà các chữ số không lập lại.

A. 1        B. 4        C. 3        D. 2

Các số tự nhiên có ba chữ số vào chia hết cho 3 được lập từ các số trên mà các chữ số chữ lặp lại là: 360; 306; 630; 603

Chọn đáp án B.

Câu 3: Cho A = a785b−−−−−−−−−−−−. Tìm tổng các chữ số a và b sao cho A chia cho 9 dư 2.

A. (a + b) ∈ {9; 18}        B. (a + b) ∈ {0; 9; 18}

C. (a + b) ∈ {1; 2; 3}        D. (a + b) ∈ {4; 5; 6}

Ta có a, b ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} và a ≠ 0

A chia cho 9 dư 2 ⇒ a + 7 + 8 + 5 + b = a + b + 20 chia cho 9 dư 2 hay (a + b + 18) ⋮ 9

Mà 18 ⋮ 9 ⇒ (a + b) ⋮ 9 ⇒ (a + b) ∈ {9; 18}

Chọn đáp án A.

Câu 4: Tìm các số tự nhiên x, y biết rằng 23x5y−−−−−−−−−−−− chia hết cho 2, 5 và 9

A. x = 0; y = 6        B. x = 6; y = 0

C. x = 8; y = 0        D. x = 0; y = 8

Theo giả thiết ta có 23x5y−−−−−−−−−−−− chia hết cho 2 và 5 nên y = 0, ta được số 23×50−−−−−−−−−−−−

23×50−−−−−−−−−−−− nên 2 + 3 + x + 5 chia hết cho 9 hay (10 + x) ⋮ 9

Theo đáp án ta có x = 8 thỏa mãn yêu cầu bài.

Chọn đáp án C.

Câu 5: Chọn câu trả lời đúng. Trong các số 2055; 6430; 5041; 2341; 2305

A. Các số chia hết cho 5 là 2055; 6430; 2341

B. Các số chia hết cho 3 là 2055 và 6430.

C. Các số chia hết cho 5 là 2055; 6430; 2305.

D. Không có số nào chia hết cho 3.

Các số chia hết cho 5 là 2055; 6430; 2305.

Chọn đáp án C.

II. Bài tập tự luận

Câu 1: Chứng mình rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.

Gọi 3 số tự nhiên liên tiếp là n; n + 1; n + 2

Tích của ba số tự nhiên liên tiếp là n(n + 1)(n + 2)

Mọi số tự nhiên khi chia cho 3 có thể nhận số dư là 0, 1, 2.

        + Nếu r = 0 thì n chia hết cho 3 ⇒ n(n + 1)(n + 2) chia hết cho 3.

        + Nếu r = 1 thì n có dạng n = 3k + 1 (k ∈ N)

        ⇒ n + 2 = 3k + 1 + 2 = 3(k + 1) chia hết cho 3.

        ⇒ n(n + 1)(n + 2) chia hết cho 3.

        + Nếu r = 2 thì n có dạng n = 3k + 2 (k ∈ N)

        ⇒ n + 1 = 3k + 2 + 1 = 3(k + 1) chia hết cho 3.

        ⇒ n(n + 1)(n + 2) chia hết cho 3.

Vậy tích của ba số tự nhiên liên tiếp chia hết cho 3.

Câu 2: Cho các số: 3564; 4352; 6531; 6570; 1248.

a) Viết tập hợp A các số chia hết cho 3 trong các số trên.

b) Viết tập hợp B các số chia hết cho 9 trong các số trên.

c) Dùng kí hiệu ⊂ để thể hiện quan hệ giữa hai tập hợp A và B.

a) Ta có: A = {3564; 6531; 6570; 1248}

b) Ta có: B = {3564; 6570}

c) Ta có B ⊂ A

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1164

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống