Phần Hình học – Chương 2: Đa giác. Diện tích đa giác

Xem toàn bộ tài liệu Lớp 8: tại đây

Sách giải toán 8 Luyện tập (trang 122-123) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Bài 19 (trang 122 SGK Toán 8 Tập 1): a) Xem hình 133. Hãy chỉ ra các tam giác có cùng diện tích (lấy ô vuông làm đơn vị diện tích)

b) Hai tam giác có diện tích bằng nhau thì có bằng nhau hay không?

Lời giải:

a) Các tam giác số 1, 3, 6 có cùng diện tích là 4 ô vuông

Các tam giác số 2, 8 có cùng diện tích là 3 ô vuông.

Các tam giác số 4, 5, 7 không có cùng diện tích với các tam giác nào khác (diện tích tam giác số 4 là 5 ô vuông, tam giác số 5 là 4, 5 ô vuông, tam giác số 7 là 3,5 ô vuông).

b) Hai tam giác có diện tích bằng nhau thì không nhất thiết bằng nhau.

Vì diện tích của tam giác là nửa tích của độ dài đáy với chiều cao tương ứng của đáy, nên chỉ cần tích của đáy với chiều cao bằng nhau thì hai tam giác đó có diện tích bằng nhau, hai cạnh còn lại có thể khác nhau.

– Ví dụ như các tam giác 1, 3, 6 có cùng diện tích nhưng không bằng nhau.

Các bài giải Toán 8 Bài 3 khác

Bài 20 (trang 122 SGK Toán 8 Tập 1): Vẽ hình chữ nhật có một cạnh bằng cạnh của một tam giác cho trước và có diện tích bằng diện tích của tam giác đó. Từ đó suy ra một cách chứng minh khác về công thức tính diện tích tam giác.

Lời giải:

Cho ΔABC với đường cao AH.

Gọi M, N, I là trung điểm của AB, AC, AH.

Lấy E đối xứng với I qua M, D đối xứng với I qua N.

⇒ Hình chữ nhật BEDC là hình cần dựng.

Thật vậy:

Ta có ΔEBM = ΔIAM và ΔDCN = ΔIAN

⇒ SEBM = SAMI và SCND = SAIN

⇒ SABC = SAMI + SAIN + SBMNC = SEBM + SBMNC + SCND = SBCDE.

Suy ra SABC = SBCDE = BE.BC = 1/2.AH.BC. (Vì BE = IA = AH/2).

Ta đã tìm lại công thức tính diện tích tam giác bằng một phương pháp khác

Các bài giải Toán 8 Bài 3 khác

Bài 21 (trang 122 SGK Toán 8 Tập 1): Tính x sao cho diện tích hình chữ nhật. ABCD gấp ba lần diện tích tam giác ADE (h.134).

Lời giải:

Ta có AD = BC = 5cm

Diện tích ΔADE:

Diện tích hình chữ nhật ABCD: SABCD = 5x

Theo đề bài ta có SABCD = 3SADE ⇔ 5x = 3.5 ⇔ x = 3.

Vậy x = 3cm

Các bài giải Toán 8 Bài 3 khác

Bài 22 (trang 122 SGK Toán 8 Tập 1): Tam giác PAF được vẽ trên giấy kẻ ô vuông (h.135). Hãy chỉ ra:

a) Một điểm I sao cho SPIF = SPAF

b) Một điểm O sao cho SPOF = 2.SPAF

c) Một điểm N sao cho

Phân tích đề:

Cả 3 phần a, b, c đều liên quan đến so sánh diện tích một tam giác với SPAF. Mà diện tích một tam giác = nửa tích của chiều cao nhân với một cạnh tương ứng, mà trong bài này đều có chung cạnh tương ứng là PF nên việc giải bài toán chỉ cần xác định các điểm sao cho khoảng cách từ điểm đó đến PF thỏa mãn yêu cầu đề bài là được.

Lời giải:

Gọi AH là chiều cao của tam giác APF.

Ta có: SAPF = AH.PF/2.

a) SPIF = SPAF

⇔ chiều cao IK = AH (Chung cạnh đáy PF).

⇔ I nằm trên đường thẳng song song với PF và cách PF 1 khoảng bằng AH.

b) SPOF = 2.SPAF

⇔ chiều cao OM = 2.AH

⇔ O nằm trên đường thẳng song song với PF và cách PF một khoảng bằng 2.AH

c)

⇔ chiều cao NQ = AH/2

⇔ N nằm trên đường thẳng song song với PF và cách PF một khoảng bằng AH/2.

Các bài giải Toán 8 Bài 3 khác

Bài 23 (trang 123 SGK Toán 8 Tập 1): Cho tam giác ABC. Hãy chỉ ra một số vị trí của điểm M nằm trong tam giác đó sao cho: SAMB + SBMC = SMAC

Lời giải:

Kẻ đường cao BH, MK.

Ta có: SAMB + SBMC + SMAC = SABC

Để SAMB + SBMC = SMAC

⇔ SMAC = 1/2 SABC

⇔ 1/2 MK.AC = 1/2 (1/2 BH.AC)

⇔ MK = 1/2 BH

Do đó, M nằm trên đường thẳng sao cho khoảng cách từ M đến BC = 1/2 đường cao BH.

Vậy điểm M nằm trên đường trung bình của ΔABC.

Các bài giải Toán 8 Bài 3 khác

Bài 24 (trang 123 SGK Toán 8 Tập 1): Tính diện tích của một tam giác cân có cạnh đáy bằng a và cạnh bên bằng b.

Lời giải:

Gọi h là chiều cao của tam giác cân.

Theo định lí Pitago ta có:

Các bài giải Toán 8 Bài 3 khác

Bài 25 (trang 123 SGK Toán 8 Tập 1): Tính diện tích của một tam giác đều có cạnh bằng a.

Lời giải:

Gọi h là chiều cao của tam giác đều cạnh a.

Theo định lí Pitago ta có:

Các bài giải Toán 8 Bài 3 khác

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 971

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống